CarMaker ROS Interface

Proof of Concept

Date: September 10", 2021
Author: IPG

J iy
5 LA
AL TOMBODTIVE

Table of Content

1 Overview 3
1.1 SYSTEM REQUIFEMENTS ...uviiiiiie e e i ettt e e e e s et e e e e e e s s e e e e e e e e st ra e e e e e e e e snnrenees 3
1.2 1070] g (o1 =T o PP TP TP PTP R PPPTP 4
2 Quick Start 6
2.1 General INFOrMEALIONoiiiiiii e 6
2.2 Installation and Preparation ... 6
221 RO S 6
22.2 CarMaker and CIMROSIFooiiiiiiii e 7
2.3 Build the EXample........oooo i 8
2.4 RUN the EXAMPIE ... 8
2.5 Check the Communication with ROS TOOISccoiiiiiiiiiiiieiccc 10
2.6 Parameter ManipuIationc..oooiiiiiiiiiii e 10
3 Examples 11
3.1 HEHOCM ..ottt e e e e e e 11
311 Topic Based SYyNChroniZationoouiiiiiiiiieie e 11
4 Documentation 14
4.1 FOIAEITFIIE OVEIVIEW ...ttt 14
4.2 CarMaker GUI EXIENSION.......ccciiuiiiiiiiiiie ettt ettt 16
4.3 Infofile Parameterizationccoiiiiiiiiiiic e 19
431 General CONfIGUIALIONoveeiiiiiiiie et 19
4.3.2 Launchfile and RQt........oooooiiiiii 20
4.3.3 CMNode Internal and ClOCK SEIVET.........coiiiiiiiiiiiieiiiie e 21
4.4 BUIID PrOCESSceiiiiitiiiee ettt 22
441 ROS WOTIKSPACE ...ttt ettt ettt et e e e b e e e e 22
4.4.2 CarMaker ROS Node Shared LIDrary.........oooouveeiiiioeiiiiieeeee e 22
4.4.3 CarMaker Executable with CarMaker C++ Interface Loadercccccvvevinnnen. 23
4.5 Interaction of CarMaker and the CarMaker ROS Node Shared Library............. 23
4.6 CarMaker JOD SChEAUIETocuiiiiiiiiiii e 24
4.7 Process SYNCNIONIZALIONouuiiiiiiiiie e 25
5 Release History 26
5.1 RV Z=T 5o T I 0 O SRR 26
5.2 VEISION 0.7.0 0. ettt 26

5.3 AV 26T (o] A T O S T TR 26

Overview

J b
System Requirements AUTOMOTIVE

1 Overview

1.1

“ROS (Robot Operating System) is an open-source, meta-operating system for your robot. It
provides the services you would expect from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-passing
between processes, and package management.” (http://wiki.ros.org/ROS/Introduction)

The focus of ROS is on robotics but the field of application has become much wider. Especially for
scientists and developers of Advanced Driver Assistance Systems the software framework became
very interesting.

IPG Automotive is currently developing an interface and workflow to allow the usage of ROS in
combination with Car-/TruckMaker. The topics code building, message passing and synchronization
as well as test automation and parameterization are touched and will be explained in this
document.

The functionality provided by ROS and the CarMaker Toolchain are quite wide, so there is not only
one way to combine the two frameworks. This document describes an early proof-of-concept
solution where the workflow of the ROS and CarMaker worlds are considered both. In the future
there might be additional variations with tendency to the preferred workflow.

This document is written for users that already have deeper knowledge with the CarMaker
programming interface (see CarMaker Programmers Guide) and general ROS usage (see e.g.
http://wiki.ros.org or http://wiki.ros.org/ROS/Tutorials)

System Requirements

General system requirements are linked to the requirements of CarMaker (see CarMaker
ReleaseNotes) and ROS (see http://www.ros.org/). Table 1-1 shows the compatibility and existing
examples for different operating systems and ROS Versions.

Platform ROS ROS 2

. Example HelloCM with ROS workspace
Example HelloCM with ROS workspace
Tested for
Tested for))
Linux 64bit o e Dashing Diademata® (Ubuntu 18.04)
e Kinetic Kame (Ubuntu 16.04)
. . e Eloquent Elusor! (Ubuntu 18.04)
e Melodic Morenia (Ubuntu 18.04))
e Foxy Fitzroy (Ubuntu 20.04)

e Noetic Ninjemys (Ubuntu 20.04) .
e Galactic Geochelone (Ubuntu 20.04)
Windows

) Currently no investigation on these platforms
Xenomai

Table 1-1: Compatibility for different operating systems and ROS versions

1 Some minor changes in the Launch File hellocm.launch.py Necessary.

IPG Automotive GmbH 3 Date: September 10th, 2021

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Tutorials
http://www.ros.org/

Overview

Concept

1.2

4) n
- AUTOMDTIVE

Concept

ROS comes with a variety of functionality where the communication via topics within the same or
across systems and the control of nodes via services and parameters are some of the most
interesting components for modular systems exchanging data for complex control tasks. The
CarMaker ROS Interface (CMRosIF) tries to support these functionalities as much as possible to
allow a seamless software integration in different development states. Therefore a ROS Node has
been implemented directly into the CarMaker executable (Figure 1).

CarMaker ROS Interface and ROS Node dependencies (Single Node Configuration)

CarMaker/TruckMaker/MotorcycleMaker
CarMaker Libs

1 libcarmaker.a j libipgdriver.a J libipgroad.a j j
ROS or ROS 2
CarMaker ROS Interface ROS/ROS 2 Libs External
% ROS Node
CarMaker ROS Interface Hlt;k:oslcpp.so.’
CarMaker Job Scheduler (a CarMaker C++ Interface) LIRS Messages
ibCMjob.a libcmrosif.so
—> " >
Schedule Jobs - basic ROS node initialization, =€ (libboost_*.s0) .
(cyclic or triggered tasks) - sets up JobScheduler, < 1 Services
- provides interface structure
u Algorithms, ...
CarMaker C++ Interface Loader Custom CarblakerSREIEEEE

libcmnode_hellocm.so +

1 ROS Node Interface

libemcppifloader-linux64.so

Additional publisher/subscriber,

Loads and triggers interfaces parameter handling, logic, etc.

CAA

| Interface Services
v (Header) (Libraries/Header)
CarMaker Executable
CarMaker.linuxé4 Messages
o (Libraries/Header)

CarMaker C+ + Interface Loader integration

Figure 1: CarMaker ROS Interface and ROS Node Dependencies

When talking about the CarMaker ROS Interface the functionality of two main modules described
below are addressed.

In order to keep the CarMaker functionalities over a wide range of application variants, the
“CarMaker ROS Node” (CMNode) is not a typical ROS style standalone executable, but wrapped
into a shared library dependent on several ROS libraries (generally ROS basic libraries and
user defined libraries/packages e.g. with messages) and may have dependencies on CarMaker
libraries (e.g. libcarmaker.a for access to the Vehicle struct). The C++ code for this shared library is
editable by the user and can be dynamically loaded into a prepared CarMaker executable with the
CarMaker C++ Interface Loader extension (might be provided as static or shared library).

The CarMaker C++ Interface Loader extension provides an API to the user accessible C code
modules and Infofile mechanism of CarMaker. The extension manages the CarMaker C++ Interface
shared libraries and allows for basic parameterization via CarMaker Infofile. It provides functions for
common CarMaker hook points (to be called in e.g. User.c or User.cpp). While these are
predefined functions and some of them are optional it is also possible to create custom functions in
the CarMaker C++ Interface (e.g. CarMaker ROS Node) and load these symbols with a general
mechanism assigning them to function pointers and calling them at any point in the CarMaker cycle
(after basic initialization has finished).

IPG Automotive GmbH 4 Date: September 10th, 2021

Overview

Concept

| P G

AL TOMBODTIVE

The CarMaker ROS Node can act as a clock server by publishing the /c1ock topic with the current
simulation time to other ROS Nodes (http://wiki.ros.org/Clock). Therefore the /use sim time
parameter needs to be set to “true” before other nodes are initialized (e.g. via launch file). Figure 2
shows the rgt Node Graph for a simple Node configuration where cm_node publishes the /clock
topic that is subscribed by all currently running nodes.

fhellocm

/hellocm/ext2cm

Jcard

/carmaker/cm_node

Figure 2: ROS rgt Node Graph for the HelloCM Example

/clock [

[carmaker/cm2ext

CarMaker differs between the start of the CarMaker executable and a single simulation (running a
TestRun). This allows to load the CarMaker ROS Node shared library at CarMaker startup or before
the next simulation starts. The latter version is interesting when “restarting” the CarMaker ROS
Node without a restart of the complete CarMaker executable (e.g. systems with complex
initialization phase). Currently the shared library is loaded at CarMaker startup while the
“dynamic start” of the CarMaker ROS Node is planned for the future.

CarMaker (localhost) - Test: Examples/BasicFunctions/Driver/Back AndForth
File Application Simulation Parameters Seftings Extras | Help i | ||=>G‘

I
Car: | CMRosIF I | aunch
ypical, unvi A~
with Rear W Launch & Start Application

Trailer: - Restart ROS Core/Daemon Select

Stop ROS Core/Daemon

Tires:

| Startrat Select
| List Basic
Load: 0 kg List Modes Select
List Topics
List Services
. Sim)
10.0 Drive forward for 10s Edit Parameters
1 100 Stop the vehicle with defined « Perf.: ¥|max IO Ty Start
2 10.0 Drive forward for 10s Status:
3 5.0 Stop the vehicle with defined « _ Buffer:
4 10.0 Drive backwards for 10s i Stop
5 5.0 Stopthe vehicle T'_r"'E-
6 999.0 Drive forward for 999s or till i Distance: | | |

Figure 3: Overview — CarMaker GUI Extension

Finally the CarMaker ROS Interface comes with a CarMaker GUI Extension providing some basic
functionalities for working with the ROS environment like editing the CMRosIF parameter file
(CarMaker Infofile) or starting default ROS programs via CarMaker GUI. More information see “4.2
CarMaker GUI Extension”.

IPG Automotive GmbH 5 Date: September 10th, 2021

http://wiki.ros.org/Clock

Quick Start

General Information

2 Quick Start

I) n)
AUTOMDTIVE

This chapter gives a short instruction to run an example including the CarMaker ROS
Interface, a ROS workspace with several packages and additional files for a specific
CarMaker version.

2.1 General Information

e Several scripts are not CM default and experimental for fast ramp up of this example!

e Current interface and build process is a prototype and will be improved in the future

2.2 Installation and Preparation

221 ROS

e Follow the installation instructions for

ROS: http://wiki.ros.org/ROS/Installation

ROS 2: e.g. https://docs.ros.org/en/foxy/Installation/Linux-Install-Debians.html
e.g. https://docs.ros.org/en/foxy/Tutorials/Colcon-Tutorial.html#install-colcon

e By default ROS installations are located under /opt/ros/

e For convenience you may set a symbolic link to your preferred ROS and ROS 2 distribution, so
you won'’t have to provide the distro to your ROS workspace each time before rebuilding, e.g.:

1: cd /opt/ros
23 sudo 1ln -sfn noetic rosl

33 sudo 1ln -sfn foxy ros2

e Check your ROS installations:

IPG Automotive GmbH

ROS

roscore
Open a new terminal and run

source /opt/ros/rosl/setup.bash
roscore

Talker
Open a second terminal and run

source /opt/ros/rosl/setup.bash
rosrun roscpp_tutorials talker

Listener
Open a third terminal and run

source /opt/ros/rosl/setup.bash
rosrun roscpp_tutorials listener

ROS 2

Talker

Open a new terminal and run

source /opt/ros/ros2/setup.bash
ros2 run examples rclcpp minimal publisher
publisher member function

Subscriber

Open a second terminal and run

source /opt/ros/ros2/setup.bash
ros2 run examples rclcpp minimal subscriber
subscriber member function

Date: September 10th, 2021

http://wiki.ros.org/ROS/Installation
https://docs.ros.org/en/foxy/Installation/Linux-Install-Debians.html

Quick Start I) A
Installation and Preparation —

AL TOMBODTIVE

2.2.2 CarMaker and CMRosIF

e Install CarMaker according to "InstallationGuide.pdf"
e Configure your ~/.pbashrc for easier use, e.g. add

Additional paths for CM

addpath () { for d in "$@"; do PATH="$PATH:$d"; done; }

addpath /opt/ipg/hil/linux/bin /opt/ipg/hil/linux/GUI /opt/ipg/hil/linux/GUI64
addpath /opt/ipg/bin /opt/ipg/carmaker/linux64/bin /opt/ipg/carmaker/linux64/GUI

e Please note that for older CarMaker versions (< 8.0) there is a special installation routine for
Ubuntu!

o Prepare your CarMaker/TruckMaker/MotorcycleMaker project directory to use the CarMaker
ROS Interface

o The CMRosIF needs an already existing project directory with an included source folder
(src/, src_tm/ Of src_mm/ folder with cM Main.c, ...) to build the CarMaker executable. If
the source folder is missing please use “CM Main GUI -> File -> Project Folder -> Update
Project...” with enabled component “Sources/Build Environment”.

e Itis recommended to version control (or backup) your existing project directory

e Copy the files from the provided zip file to the corresponding folders in your project
directory (e.g. by directly extracting inside the directory)

e Update the source folder (e.g. src/, src_tm/ OF src_mm/)

o |f your CarMaker project is newly created it is safe to apply the provided patch:

cd <CMProjDir>/src cmrosif
./patch.sh ../<source folder>

This will update your project’s User.c and Makefile located under <source folder>
with the necessary modifications

e Otherwise merge in the differences manually using your favorite merge tool (e.g. meld)
<CMProjDir>/src_cmrosif/Makefile - <CMProjDir>/<source folder>/Makefile

<CMProjDir>/src_cmrosif/User.c = <CMProjDir>/<source folder>/User.c

IPG Automotive GmbH 7 Date: September 10th, 2021

Quick Start

J 1
Build the Example AUTOMOTIVE

2.3 Build the Example

Build ROS workspace (CarMaker ROS Node shared library, messages, external nodes) and the
CarMaker executable:

For an initial build (or rebuild) of the ROS workspace it is recommended to build via CM
Makefile, as it will automatically set the according CarMaker version and include paths in the
CMake cache of the ROS workspace
Open a terminal and navigate to your CarMaker projects source directory
To build the CarMaker executable and the respective ROS workspace, run

cd <CMProjDir>/<source directory>

make cm-rosl <or> make cm-ros2
Subsequent builds of the ROS workspaces can be done directly without the help of the CM
Makefile using the ROS build tools

cd <CMProjDir>/ros/ros <1 or 2>ws

catkin make <or> colcon
If you also want to rebuild the workspace without the help of the CM Makefile or if you are
sharing your workspace with other people you should define the expected CarMaker versions in
the appropriate CMakelLists.txt and toggle the ability to set the CM version from outside. For
e.g. CarMaker 9.1.1 you would set the following in

<CMProjDir>/ros/rosl ws/src/cmnode hellocm/CMakeLists.txt and
<CMProjDir>/ros/ros2_ws/src/cmnode hellocm/CMakeLists.txt

set (GET CM VERSION FROM CMD LINE OR CACHE OFF)
...

set (CARMAKER VER 9.1.1)

set (CARMAKER NUMVER 90101)

and for CarMaker versions < 8.0 also the variable CARMAKER DIR to

set (CARMAKER DIR S$SENV{IPGHOME}/hil/linux-${CARMAKER VER})

2.4 Run the Example

Once everything is built you can start the . /cMStart.sh Script in your project directory
e This script gets initially generated by the CM Makefile and may be customized to your liking

e [ttakes a single digit (e.g., 1 or 2) as an optional argument to source your ROS or ROS 2
workspace before starting CarMaker

e When no argument is provided, the ROS workspace that you have built first using the CM
Makefile is chosen by default

CarMaker Main GUI with menu "Extras -> CMRosIF" should be visible
e The starting order for roscore and nodes is important!
¢ In this version the external node is started via launch file (roscore is started automatically)

e Ensure the correct CarMaker executable has been selected via "CM Main GUI ->
Application -> Configuration/Status"

o "Folder"-Button : Choose bin/CarMaker.linux64 Of src/CarMaker.linux64 which
was built previously

IPG Automotive GmbH 8 Date: September 10th, 2021

Quick Start I) n Y
Run the Example AUTOMOTIVE

e Depends on your workflow! Special search order is used (see "CM Main GUI -> Help ->
User's Guide") e.g. you can also write "CarMaker.linux64" (first "bin/” in current project
is checked, then Installation folder)

e Ensure that the correct parameters are set in the CMRosIFParameters file: “CM Main GUI ->
Extras -> CMRosIF -> Edit Parameters”

e For ROS 2, atleast cfg.Args and Launch.Args have to be changed for the example to
work

e For more information have a look at cp. 4.3 Infofile Parameterization

e Start external ROS Node and CarMaker Application via "CM Main GUI -> Extras ->
CMRosIF -> Launch & Start Application”

o If the external node was just started via “Launch” you can start the CarMaker
executable via " CM Main GUI -> Application -> Start & Connect"

e If you are using a ROS 2 Distribution older than Foxy, you will need to rename the
fields namespace, name and executable inside the launch file
ros/ros2 ws/src/hellocm/launch/hellocm.launch.py t0 node namespace,
node name and node_executable respectably!

The CM Main GUI should show that CarMaker is running in idle state

Check log messages from executable via "CM Main GUI -> Simulation -> Session Log"
e The Linux terminal should show the log messages for the external node

e Open a TestRun e.g. Examples/Powertrain/PowertrainControl/AdaptiveCruiseControl
via "CM Main GUI -> File -> Open..."

e Push the "Start"-Button in CM Main GUI and check the output in the Session Log and terminal

IPG Automotive GmbH 9 Date: September 10th, 2021

Quick Start . I)
Check the Communication with ROS Tools AT B T

2.5

2.6

Check the Communication with ROS Tools

e Rqt can be started conveniently via "CM Main GUI -> Extras -> CMRosIF -> Start rqt"
e Alternatively open a new terminal, source your ROS workspace and start rqt

e ROS: source <CMProjDir>/ros/rosl ws/devel/setup.bash && rgt

e ROS 2: source <CMProjDir>/ros/ros2 ws/install/setup.bash && rgt
e Rqtlets you use several provided plugins, like

e running Nodes via "Plugins -> Introspection -> Process Monitor"

e node interaction via "Plugins -> Introspection -> Node Graph"

e logging via "Plugins -> Logging -> Console"

e and much more ...

Parameter Manipulation

ROS parameters might be manipulated in several ways:
e Using ROS tools

ROS ROS 2

rosparam in new terminal ros2 param in new terminal
cd <CMProjDir> cd <CMProjDir>
source ros/rosl ws/devel/setup.bash source ros/ros2 ws/install/setup.bash
rosparam list ros2 param list
rosparam get /hellocm/cycletime ros2 param get /hellocm cycletime
rosparam set /hellocm/cycletime 50 ros2 param set /hellocm cycletime 50

e Using CarMaker (e.g. for test automation)
e Currently no direct support

e Tcl's exec command may be used with ScriptControl

a

—J

IPG Automotive GmbH 10 Date: September 10th, 2021

Examples I) A
—)
HeI|OCM AUTOMOTIVE

3 Examples

3.1 HelloCM

/hellocm

/hellocm/hellocm /hellocm/ext2cm

Jcarmma

[carmaker/cm_node

Figure 4: ROS rgt Node Graph for the HelloCM Example

fclock ||

Jcarmaker/cm2ext

e Simple example for demonstration of communication

e The current example can be used with or without hard synchronization between the CarMaker
ROS Node an the external ROS Node

e The synchronization can be enabled/disabled in the CMRosIF Parameter file via “CM Main
GUI -> Extras -> CMRosIF -> Edit Parameters” and the Parameter Node . Sync.Mode

o CarMaker can act as a clock server and provide simulation time to other ROS nodes

e Related ROS packages with source code, launch files, etc. are located in
<CMProjDir>/ros/<workspace>/src

3.1.1 Topic Based Synchronization

The general synchronization method is described in chapter “4.7 Process Synchronization”.

The HelloCM example allows an activation of the synchronization using the parameter
Node. Sync.Mode (See chapter “Infofile Parameterization”) and provides the User Accessible
Quantity CMRosTIF.HelloCM.SynthDelay to create an artificial delay in the external ROS Node.

IPG Automotive GmbH 11 Date: September 10th, 2021

Examples p I))
—J
HelloCM - AUTOMOTIVE

CarMaker - Direct Variable Access

Direct Variable Access Close
Quantity Value Unit G1 G2 Mode Duration [ms] Mew Value
#|CMRosIF HelloCM.SynthDelay | 3s [[Value|| A 3%
3 1 1 Vale | | Set]
3 [T value| | | Set|
3 [T value| | | Set|
3 [T value | | Set|
3 L)1 vale| | | et |
3 [T value| | | Set|
3 [T value| | | Set|
3 [T vale] | | Set|
3 L)1 vale | | et
Set Group 1 | Set Group 2 | Release all

Figure 5: User Accessible Quantity to test synchronization

By default the synchronization is off and results in a behavior shown in Figure 6. The CarMaker
ROS Node acts as a clock server and publishes simulation time to the ROS network. The external
node reacts on the current ROS time by publishing a message with its currently known simulation
time (2). This message is received by the CarMaker ROS Node at simulation time (1) with a non-
constant delay. The third transmission at 30s was additionally delayed with an artificial delay of one
second.

CarMaker - Session Log s

Session Log ‘wslinux-appl030.ipg_20211119_183006.log"

Errars:] ==

Warnings: 0

SIM_START Examples/BasicFunctions/Driver/BackAndForth 2021-11-19 18:30:12
Time 0529
CarMaker ROS Node enabled: Mode = 1, SyncMode = @
-> Node Name = /carmaker/cm_node
-> Publish /clock every 108ms
-> Sending service request
CMJob: Triggerdob -> Name=ext2cm Cycle=10000 Offset=0
Time 0.058
-> Advertised Topics (3):
-= /rosout
-> Jfclock
-= fcarmaker/cm2ext
-» Subscribed Topics (2):
-> Jclock
-> /hellocm/ext2cm
Time 0.000

SIMULATE Examples/BasicFunctions/Driver/BackAndForth

Time 10,011

[1637343023.340379699, 10.000000000]: /carmaker/cm node: Sub Msg: Time 10.000s, Cycle 1
Time (20,010

[1637343033.339337960, 20.000000000]: /carmaker/cm node: Sub Msg: Time 20.000s, Cycle 2
Time 31.004

[1637343044,333391815, 31.000000000]: /carmaker/cm node: Sub Msg: Time 30.000s, Cycle 3
Time 35.003
SIM_END Examples/BasicFunctions/Driver/BackAndForth 35s 308.823m
=

Figure 6: Simulation without synchronization

IPG Automotive GmbH 12 Date: September 10th, 2021

Examples
HelloCM

g PG

The same simulation was started with Node . sync.Mode = 1 (Figure 7). Here all messages arrive
deterministically after the external Node has been triggered (the Log output has a constant delay of

1ms).

CarMaker - Session Log £

Session Log ‘wslinux-appl030.ijpg_20211119_183113.log"

Errars: 0
Warnings: 0

ESl

SIM_START
Time 0239

Time 0.062

Time 0.000
SIMULATE

Time 10.001
Time '20.001
Time 30.001

Time 35.003
SIM_END

Examples/BasicFunctions/Driver/BackAndForth 2021-11-19 18:31:16

CarMaker ROS Node enabled: Mode = 1, SyncMode = 1
-> Node Name = /carmaker/cm node
-> Publish /clock every 1080ms
-> Sending service request
CMJob: Sync Cycliclob -» Name=ext2cm Cycle=10080 O0ffset=0

-> Advertised Topics (3):
-> /rosout
-= Jclock
-> fcarmaker/cm2ext

-> Subscribed Topics (2):
-= /clock
-= fhellocm/ext2cm

Examples/BasicFunctions/Driver/BackAndForth

[1637343087.425938296, 10.000000000]1: /carmaker/cm node: Sub Msg: Time 10.08088s, Cycle 1
[1637343097.424100327, 20.00000000808]1: /carmaker/cm node: Sub Msg: Time 208.08088s, Cycle 2

[1637343107.422069013, 30.000000000]: /carmaker/cm node: Sub Msg: Time 30.000s, Cycle 3

Examples/BasicFunctions/Driver/BackAndForth 358 308.823m

=

Figure 7: Simulation with topic based synchronization

IPG Automotive GmbH

13

Date: September 10th, 2021

Documentation

Folder/File Overview

4 Documentation

4.1

Folder/File Overview

2

|P G

AL TOMBODTIVE

The paths below are relative to the CarMaker Project Directory and describe the structure and
contents after the integration of the CMRosIF files. Files and folders in italic will be available after
building. The structure can be adapted for different use cases (references in files will have to be
updated).

CM_CMRosIF_HelloCM

— bin
L

doc

-

GUI
L

lib
L
ros

=

src

CarMaker. Linux64

Data

Config
t: CMRosIFParameters

Script
t: CMRoSIF_UserUtils.tcl

CMJobScheduler
CMJobScheduler.html
CMRosIF_UsersGuide.pdf

CMExt-CMRosIF.mod

include

cmeppif.h
cmcppifloader.h

libcmeppifloader-1linux64.so

rosl_ws
ros2_ws

CarMaker. Linux64
CM_Main.c
CM_Vehicle.c
I0.c

IOVec.h

Makefile

User.c

User.h

_cmrosif

CMRosIF.patch
Makefile
patch.sh
User.c

build.sh
CMStart.sh
ros_setup.bash

— build

— devel

[~ src
[Cmno

— cmro

— hell

— hell

— CMak
— build4dec
“— build.sh

CM_CMRosIF_HelloCM/ros/rosl_ws

de_hellocm

src
t: cmnode_hellocm.cpp
cmnode_hellocm.h
CMakeLists.txt
package.xml
sutils
include
L— cmrosutils
cmeppif.h
CMJob.h
cmjob_publisher.h
cmjob_subscriber.h
cmrosif.h
lib
L— libCMJob.a
src
L— cmrosif.cpp
srv
L— CMRemoteControl.srv
CMakelLists.txt
package.xml
ocm
launch
L— hellocm.launch
src
— hellocm.cpp
CMakelists.txt
package.xml
ocm_msgs
msg
CM2Ext.msg
Ext2CM.msg
srv
L— Init.srv
CMakelLists.txt
package.xml
eLists.txt
lipse.sh

build

': install

[src

— build.sh

CM_CMRosIF_HelloCM/ros/ros2_ws

F— cmnode_hellocm

src
|: cmnode_hellocm. cpp
cmnode_hellocm. hpp
CMakeLists.txt
package.xml

— cmrosutils

include

L— cmrosutils
cmeppif.h
CMJob.h
cmjob_publisher.hpp
cmjob_subscriber.hpp
cmrosif.hpp

1lib

L— 1ibcMIob.a

src

L— cmrosif.cpp

srv

L— CMRemoteControl.srv

CMakeLists.txt

package.xml

— hellocm

launch
hellocm.launch.py
hellocm.launch.xml

src

— hellocm.cpp

CMakeLists.txt

package.xml

“— hellocm_msgs

msg
CM2EXt.msg
Ext2CM.msg

srv

L— Init.srv

CMakeLists.txt

package.xml

Figure 8: CM project folder overview with provided ROS and ROS 2 workspace examples

Description of most relevant folders/files:

e bin/

Location of the CarMaker executable after installing (make install)

e Data/Config/CMRosIFParameters
CarMaker Infofile with parameters for the CMRosIF and CarMaker ROS Node

IPG Automotive GmbH

e Enable/disable interface/clock server

e CarMaker ROS Node remapping arguments,

e j.e.Cfg.Args =

__ns:=MyNamespace t0o push down all topics, ...

Accessible via "CM Main GUI -> Extras -> CMRosIF -> Edit Parameters"

14

Date: September 10th, 2021

Documentation I) D)
Folder/File Overview AUTOMOTIVE

e More Information see “4.3 Infofile Parameterization”
e doc/
e Documentation for additional modules, like the CMRosIF and CMJobScheduler
e GUI/
e Folder for CarMaker GUI extension of current CarMaker project directory
e The mod files can be copied to the CarMaker installation folder to be available globally
e CMExt-CMRosIF.mod: see chapter “4.2 CarMaker GUI Extension”
e include/
¢ Folder with additional include files

e The headers cmcppif.h and cmcppifloader.h for CarMaker C++ Interfaces are located in
this folder

o lib/

e Additionally linked libraries of the CarMaker executable like the CarMaker C++ Interface
Loader library 1ibcmeppifloader-1inux64.so

e src/
e CarMaker source folder for building the CarMaker executable
¢ Needs to be updated once using the files located under src_cmrosif/
¢ Makefile

e Default CarMaker Makefile with additional flags/libraries for using the CarMaker C++
Interface Loader module and additional goals to build the ROS workspaces

e Building CarMaker executable with CarMaker C++ Interface Loader and ROS
workspaces

e User.c

e Loading and triggering CarMaker C++ Interfaces, such as the CMRoslIF, using the
CMCpplFLoader 1ib/libcmeppifloader-1linux64.so

e see include/cmcppifloader.h for more details
e src_cmrosif/

e patch file and script (CMRosIF.patch, patch.sh) to update the CarMaker source folder
automatically

o template files (Makefile, User.c) to update the CarMaker source folder manually
e build.sh
e Builds CarMaker and the ROS workspaces. Experimental for fast ramp up of the examples!
¢ Using the Makefile <cMProjpir>/src/Makefile Of your projects source folder is preferred
e CMStart.sh

e Sources your ROS workspace and starts the CarMaker GUI with the GUI extension. File is
created during the first run of build. sh or make within the CarMaker source directory.

e ros_setup.bash
e helper script for sourcing the appropriate ROS workspace
e used by CMRosIF GUI extension and CMStart.sh script

e ros/rosl ws/ and ros/ros2_ws/

IPG Automotive GmbH 15 Date: September 10th, 2021

Documentation

J ‘
CarMaker GUI Extension A TE M B e

Native ROS workspaces (ROS: catkin, ROS 2: ament) with user packages (messages,
nodes, ...)

Including topics and services as well as the external ROS Node and the CarMaker ROS
Node shared library for the HelloCM example

The workspace might also be set as a symbolic link to an already existing ROS workspace
or referenced in the CM Makefile

src/cmnode_hellocm
e Source code for the CarMaker ROS Node shared library

e Derives from CarMaker ROS Interface base class located under the cmrosutils
package

e Created as a CarMaker C++ Interface

e Place for customer-specific changes

src/cmrosutils

e General utilities when using ROS in combination with CarMaker
¢ Includes base class for the general CarMaker ROS Interface

e CarMaker ROS Interface base class derives from more general CarMaker C++ Interface
class to ensure compatibility with the CarMaker C++ Interface Loader

src/hellocm

e Source code for the external ROS node of the example (independent of CarMaker)
src/hellocm_msgs

¢ Message and Service definitions used by the nodes above

build.sh or build4eclipse.sh

e Build scripts for the ROS workspace. While build.sh runs a normal build,
builddeclipse.sh prepares the ROS .build/ folder for an eclipse project that can be
imported to eclipse (inside eclipse: “File -> Import -> Existing Projects into Workspace”)

4.2 CarMaker GUI Extension

The CarMaker ROS Interface comes with an optional CarMaker GUI extension module. The
extension provides an extra menu “CM Main GUI -> Extras -> CMRosIF” in the CarMaker Main
GUI. The menu extension is included in the file cMExt-CMRosIF.mod. This file can be placed inside
<CMinstDir>/GUI to be globally available or inside the CarMaker project directory and loaded via
an additional command line argument -ext <filename>.mod When starting the CarMaker GUI, e.g.
if the mod file is located in the folder <cMProjDir>/GUI the command could be

CM .

—-ext GUI/CMRosIF.mod OF CM-9.1.1 . —-ext GUI/CMRosIF.mod .

For the CMRosIF example, the command line is located inside the run.sh script. It is required to
add the CarMaker installation path to the systems search path (please check chapter “Fehler!
Verweisquelle konnte nicht gefunden werden. Fehler! Verweisquelle konnte nicht gefunden
werden.” for additional information) to use it.

IPG Automotive GmbH

16 Date: September 10th, 2021

Documentation p I) n Y
CarMaker GUI Extension i AUTOMOTIVE

CarMaker (localhost) - Test: Examples/BasicFunctions/Driver/BackAndForth
File Application Simulation Parameters Seftings Extras | Help i | |PG|

!
Car: CMRosIF I | aunch
Typical, unv,

with Rear W Launch & Start Application

Restart ROS Core/Daemon Select

Trailer:

Stop ROS Core/Daemon

Tires: { start rat

| Select
| List Basic
Load: List Nodes Select
List Topics
List Services
0 10.0 Drive forward for 10s e Edit Parameters
1 100 Stop the vehicle with defined « Perf.: ¥ max e oy Start
2 100 Drive forward for 10s Status:
3 5.0 Stop the vehicle with defined « _ Buffer:
4 100 Drive backwards for 10s i | Stop
5 50 Stopthe vehicle Time:
6 999.0 Drive forward for 999s or till el Distance:
A |

Figure 9: CarMaker GUI Extension

Following commands are currently available:

Launch

This command starts a new terminal, sources the script <CMProjDir>/ros_setup.bash and
executes ROS Launch. If the feature Terminalcmd is enabled, previously started terminals by the
Launch feature will be stopped first. The arguments for ROS Launch can be parameterized in the
Infofile <cMProjDir>/Data/Config/CMRosIFParameters. (See chapter “4.3 Infofile
Parameterization”)

Launch & Start Application

This command works like the command “Launch” described above, but additionally the CarMaker
executable is started. An already running executable will be stopped. This allows a complete
start/restart of the simulation setup. Several parameters influence the startup (e.g. Cfg.Features).
Please check the chapter “Infofile Parameterization” for more information. Please ensure that the
correct CarMaker executable is selected (“CM Main GUI -> Application -> Configuration/Status”)

<Restart/Stop> ROS Core/Daemon

“Restart” stops the currently running roscore and starts again. “Stop” just stops the process.
Normally not necessary when using the command “Run launch file” where the roscore is
automatically started with the other ROS nodes.

Start rqt

This command starts a new terminal, sources the script <CMProjDir>/ros_setup.bash and
executes the ROS program rqt. The arguments for rqt can be parameterized in the Infofile
<CMProjDir>/Data/Config/CMRosIFParameters. (See chapter “4.3 Infofile Parameterization”)

IPG Automotive GmbH 17 Date: September 10th, 2021

Documentation 4 I) n
CarMaker GUI Extension A TE M B e

List <Basic/Nodes/Topics/Services>

These commands run the corresponding ROS programs rostopic, rosnode, rosservice and prints
the output to the CarMaker ScriptControl window.

Edit Parameters

This command opens the Infofile <CMProjDir>/Data/Config/CMRosIFParameters for editing. (see
chapter “4.3 Infofile Parameterization”).

If nothing happens it is possible that the default editor is not set correctly. For Ubuntu and before
CM6.0.4 there is an additional mod file cMExt-GUI_ PatchUbuntu.mod that fixes this issue starting
gedit. If you prefer to use another editor, the Tcl variable $pgm (TextEditor.linux) can be
manipulated e.g. via ScriptControl (current session only) or by adding an entry with the same
command to a .carMaker.tcl-file located in the root directory of the CarMaker project directory or
your home directory:

set ::Pgm(TextEditor.linux) gedit

IPG Automotive GmbH 18 Date: September 10th, 2021

Documentation I) n
Infofile Parameterization A TE M B e

4.3

43.1

Infofile Parameterization

Following paramaters can be used to parameterize the CarMaker ROS Interface. The parameters
allow for a modification of the internal mechanism and e.g. the arguments provided to the CarMaker
ROS Node in the initialization function cMCppIFLoader init().

The parameters are managed in different groups with their own prefix

e cfg.* :General configuration of CMRosIF
e Launch.*: Parameters related to the command “CM Main GUI->Extras->Run launch file”
e rgt.* :Parameters related to the command “CM Main GUI->Extras->Start rqt”

e Node.* :Parameters used inside CarMaker ROS Node. Depends on node design!
General Configuration

Cfg.Lib.Path

This parameter is not optional!

Path to the CarMaker ROS Node shared library. The path can be absolute or relative to current
CarMaker project directory or available within the paTa variable, e.g. LD _LIBRARY PATH. The shared
library is currently loaded at startup of the CarMaker executable.

Example: cfg.Lib.Path = libcmnode hellocm.so

Cfg.Mode

This parameter is optional! befault = 1

The CarMaker C++ Interfaces can be disabled (cfg.Mode = 0). In this case the interfaces shared
library is not loaded after starting the CarMaker executable and the CarMaker ROS Node will thus
not be available. User functions obtained with cMCppIFLoader getSymbol () will be NULL pointers
and will have to be managed by the user (e.g. if (MyFunc != NULL) MyFunc () ;)!

Cfg.Name
This parameter is optional! befault = “cm node”

Changes the name of the CarMaker ROS Node provided to the CMRosIF GUI. To dynamically
change the actual name of the node, use remapping arguments that can be set using the cfg.args
infofile parameter.

IPG Automotive GmbH 19 Date: September 10th, 2021

Documentation I) n
Infofile Parameterization A TE M B e

4.3.2

Cfg.Args
This parameter is optional! Default = v~

The parameter string is mapped to the argc and argv arguments and eventually evaluated by the
ROS init functions. This allows the user to provide arguments in a style of a ROS standalone node
where the arguments argc and argv are provided by the main () function (e.g. for remapping
arguments, ...).

Remapping arguments can’t be provided directly as arguments to the CarMaker executable!
Example with cfg.Args = ns:=/carmaker :

CarMakerRosInterface::init()\N”|prOWde argc=2 and argv[l]:“__ns::/carmaker"tOthe
ROS init function: Node name, Topics, etc. will be pushed down to the ROS namespace /Myvhcl
(so the node name /cm_node will become /carmaker/cm_ode).

Cfg.Features
This parameter is optional! befault = “TerminalCmd”

The parameter allows a space separated list with different special features available for the
CMRosIF.
e AutoStart (experimental)
e Enables an automated mechanism when CarMaker TestRun is started
e Stopping ros launch and CM executable
e Start of ros launch file and CM executable
e calls cfg.LaunchProc in context startsim
e TerminalCmd (experimental, Ubuntu only)
e Mechanism to handle multiple Terminals
e Automatic termination of launch terminal
e Optional multi terminal/tab mechanism

e Managing different tabs and terminals and running multiple launch files in the same (one
tab for each) or multiple terminals

o Create additional terminals with Linux commands
e Check cfg.UserUtils.FPath and Cfg.LaunchProc
e Additional parameterization via keys
. <pre> = Cfg.TerminalCmd
e <pre>.startwait = Time to wait in ms after start command was executed

e <pre>.stopwait = Time to wait in ms after terminal stop request
Launchfile and Rqt
Launch.Args

Arguments provided to the ROS program roslaunch/ros2 launch when the GUI command
“CM Main GUI->Extras->CMRosIF->Run launch file” is used.

IPG Automotive GmbH 20 Date: September 10th, 2021

Documentation I) n
Infofile Parameterization A TE M B e

4.3.3

Example:

Launch.Args = hellocm hellocm.launch use sim time:="true" Will run the launch file
hellocm.launch from ROS package hellocm providing the argument use sim time:="true".

rqt.Args

Arguments provided to the ROS program rqt when the GUI command “CM Main GUI->Extras-
>CMRosIF->Start rqt” is used.

CMNode Internal and Clock Server

Node.Mode

Usage depends on node design! See source files of CarMaker ROS Node for more information.

The intention of this parameter is to set an node internal mode.
€.g. 0=0ff, 1l=Enabled, 2=ThreadedSpin,

Node.Sync.Mode
Usage depends on node design! See source files of CarMaker ROS Node for more information.

The synchronization mechanism is currently under investigation. Currently external ROS nodes can
be synchronized only via the /clock Topic published by the CarMaker ROS Node. But CarMaker
does not wait for the answer, so incoming Topics may arrive delayed and not in an deterministic
way.

The intention of this parameter is to set a node internal synchronization mode.
€.g. 0=NoSync, 1l=SyncViaTopics,

Node.Sync.TimeMax
Usage depends on node design! See source files of CarMaker ROS Node for more information.

Defines the timeout in seconds if synchronization is enabled. By default CarMaker will throw an
error and stop the current TestRun if the expected topic is not received within this timeout.

Node.UseSimTime
Usage depends on node design! See source files of CarMaker ROS Node for more information.

If this parameter is set to 1 CarMaker will act as a ROS Clock Server by setting the ROS parameter
/use_sim_time and publishing the current simulation time to /clock every Node.nCyclesClock
cycles.

Node.nCyclesClock
Usage depends on node design! See source files of CarMaker ROS Node for more information.

Number of CarMaker cycles. Generally duration for 1 cycle is 1ms.

IPG Automotive GmbH 21 Date: September 10th, 2021

Documentation I) n
Build Process AUTOMOTIVE

4.4

441

4.4.2

Build Process

Chapter “2.3 Build the Example” shows how to build the example using the CarMaker Makefile. All
included steps can be executed by hand as described below.

ROS Workspace

The ROS workspace (e.g. <cMProjDir>/ros/rosl_ws, native ROS workspace) contains the script
build.sh, that makes some preparation (e.g. sourcing setup.bash from ROS installation) and
executes the default ROS command catkin make (ROS default) or colcon build (ROS 2 default).
All packages located in src folder below the workspace will be built. To ignore a package, add an
empty file called caTxkIN 1GNORE (ROS) or AMENT IGNORE (ROS 2) to the root level of a package
(e.g src/hellocm/CATKIN IGNORE).

The location of the ROS workspace inside a CarMaker Project Directory is optional. The ROS
workspace can also be in a different place and linked via symbolic link. Without a link inside
<CMProjDir>/ros/ some features shown with the provided example might not work.

For detailed information check http://wiki.ros.org/catkin/workspaces.

For the provided example all code with ROS dependency is located in this workspace (e.g. external
ROS Node and the CarMaker ROS Node shared library, ...).

CarMaker ROS Node Shared Library

The CarMaker ROS Node shared library is built within the ROS workspace in its own ROS package
(e.g. <CMProjDir>/ros/rosl_ws/cmnode hellocm).

e The path to the CarMaker ROS Node shared library which is dynamically loaded inside the
CarMaker executable can be adapted by editing the parameter cfg.Lib.Path (See 4.3.1
General Configuration)

e The shared library contains the REGISTER _CARMAKER CPP_IF macro in order to be loadable by
the interface loader

e Additional user defined functions can be created inside the library and called from e.g. User.c
via function pointers (see example code for cmnode hellocm.cpp, User.c and
cmcppifloader.h)

e CarMaker Data (e.g. Sensors and Vehicle Model) can be directly accessed inside the CarMaker
ROS Node shared library. Just add the necessary headers from <CMInstDir>/include/.
Please note that the shared library will depend on CarMaker libraries and the CarMaker version
at compile time! For a new CarMaker Version (especially new major releases) the library needs
to be recompiled.

e The CarMaker Version (path and version number) can be adapted in the cMakeLists.txt.

Please check cMakeLists.txt and package.xml inside the cmrosutils and cmnode hellocm
packages for more information.

IPG Automotive GmbH 22 Date: September 10th, 2021

http://wiki.ros.org/catkin/workspaces

Documentation I) B
Interaction of CarMaker and the CarMaker ROS Node Shared TS S :{

| ihrarv

4.4.3

4.5

CarMaker Executable with CarMaker C++ Interface Loader

The CarMaker executable with the CarMaker C++ Interface Loader is built using the CarMaker
Makefile, e.g. located in <cMProjDir>/src. To build it open a new terminal and execute make
install inside this folder (more information see “Programmers Guide”). The CarMaker executable
for this example usually only needs to be compiled after modifications in the CarMaker user
modules (User.c, ...) or when the CarMaker C++ Interface API changes.

The CarMaker C++ Interface Loader currently consists of a header i.e.
<CMProjDir>/include/cmcppifloader.h and a shared library i.e.
<CMProjDir>/lib/libcmeppifloader-1inux64.so. The shared library is linked with the CarMaker
executable and is automatically loaded at startup.

Interaction of CarMaker and the CarMaker ROS Node
Shared Library

The CarMaker ROS Node shared library is not directly linked to the CarMaker executable. When
calling the loading function of the CarMaker C++ Interface Loader inside user.c the CarMaker
ROS Node shared library parameterized by cfg.Lib.Path (see 4.3 Infofile Parameterization) will
be loaded during runtime of the CarMaker executable. Commonly used default hook points already
exist (see cmcppifloader.h and cmcppif.h). These hook functions call the appropriate member
functions of the CarMaker ROS Node shared library.

For example, cMCppIFLoader testrunStartAtBegin () Will eventually call the the member function
CMNodeHelloCM: :userTestrunStartAtBegin ().

The cMcppIFLoader load () with the appropriate interface name (“*cMrosIF”) has to be called
before any other function from the CMCpplFLoader API.

Additional user functions may be defined as extern “c” inside the CarMaker ROS Node shared
library. The function cMCppIFLoader getSymbol () allows to search for functions/symbols inside
the recently loaded CarMaker C++ Interface library and returns a function pointer that can be used
e.g.in user.c. Check user.c and the shared library source code for an example.

Variables from the CarMaker environment can be directly accessed by including the relevant
CarMaker headers (e.g. vehicle.h for vehicle velocity, ...) from the CarMaker installation directory
(e.g. /opt/ipg/carmaker/linux64/include) in the CarMaker ROS Node shared library. Libraries
for linking are located in the 1ib/ folder of the CarMaker installation directory.

IPG Automotive GmbH 23 Date: September 10th, 2021

Documentation 4 I) n
CarMaker Job Scheduler J A TE M B e

4.6 CarMaker Job Scheduler

The job scheduler is used to execute one or more cyclic tasks (e.g. publish and subscribe
messages, copy data from message buffer to vehicle model, ...) dependent on e.g. the CarMaker
cycle number relative to simulation start. This allows to publish data e.g. every 10ms with an offset
of e.g. 5bms.

For an example on how to set up a publisher and subscriber, please have a look at:
. cmrosutils/cmjob publisher.hlpp],
(] cmrosutils/cmjob subscriber.hlpp],
° cmnode_hellocm.h[pp] and

. cmnode_hellocm.cpp.

For more details, please refer to the Doxygen documentation available at
<CMProjDir>/doc/CMJobScheduler.html.

IPG Automotive GmbH 24 Date: September 10th, 2021

Documentation I) n Y
Process Synchronization AUTOMOTIVE

4.7

Process Synchronization

By default ROS is a non-deterministic software framework that transfers messages between
several nodes using the publish/subscribe mechanism. The actual time until a message is received
depends on system workload and the transmission path. Running multiple processes independently
may result in non-reproducible simulations. If running the simulation in soft real time the effect might
be small and therefore acceptable for many use cases, but running CarMaker with maximum
simulation speed small deviations in the message timing will have an impact on simulation results.

Therefore a simple example of a topic based synchronization between an external ROS Node and
the CarMaker ROS Node is available that forces CarMaker to wait until the anticipated message is
received. The synchronization is based on knowledge about the expected cycle time of the external
node and uses an internal cycle counter inside the CarMaker Node.

The mechanism may be used in different ways

1. Simulation time based synchronization
e The ROS /use_sim time mechanism needs to be activated
e CarMaker ROS Node has to act as a clock server
e ROS Timer inside external ROS Node that reacts on changes in simulation time
e Provide cycle time and topic name for synchronization to CarMaker ROS Node
2. Data triggered synchronization

¢ ROS Node interaction with one or more calculation chains, each chain finishes with a topic
in the CarMaker ROS Node that is used for synchronization

e One ore more subscription(s) in external ROS Node(s)
e Includes algorithm, etc.
e ROS publish at the end of calculation chain
e Provide cycle time and topic name for synchronization to CarMaker ROS Node

e CarMaker ROS Node waits in specific cycle until all messages have arrived

The simulation time based synchronization is implemented in the example described in chapter
“HelloCM”. The effect of synchronization is demonstrated in the chapter “Topic Based
Synchronization”.

IPG Automotive GmbH 25 Date: September 10th, 2021

Version 1.0.0

Release History I) A
—)
J AUTOMOTIVE

5 Release History

51 Version 1.0.0

General

Renamed CarMaker ROS Interface loading library to CarMaker C++ Interface Loader
Defined CarMaker C++ Interface as abstract class
CarMaker ROS Interface inherits from CarMaker C++ Interface
e Implements general ROS functionality
User example CMNodeHelloCM inherits from CarMaker ROS Interface
¢ Implements user-specific functionality
Replaced job mechanism with CMJobScheduler
Refactored ROS workspaces
Tested with ROS 2 Foxy Fitzroy and Galactic Geochelone

52 Version 0.7.0

General

CMRoslIF including the GUI distinguish between ROS and ROS 2 depending on which version
is sourced at startup

Integrated native ROS 2 workspace with HelloCM example
o tested with Eloquent Elusor and Dashing Diademata

Simplified installation and build process that supersedes the need of changing CM versions in
multiple places

Fixed a deprecation warning by gnome-terminal in TerminalCmd

5.3 Version 0.6.8

General

Update User.c and Makefile for CarMaker executable in <cMProjDir>/src/
Default target for ROS build and examples is devel (before install)
Add script <CMProjDir>/ros/rosl ws/src/builddeclipse.sh

¢ Builds a catkin workspace with eclipse project files inside the buiid folder and allows a
direct import as eclipse project

e According to “Catkin-y approach” described on http://wiki.ros.org/IDEs#Eclipse
e The script can be called manually on demand

Now the demo package is independent from CarMaker version and can be easily integrated into
an already existing CarMaker Project Directory

IPG Automotive GmbH 26 Date: September 10th, 2021

http://wiki.ros.org/IDEs#Eclipse

Release History , I) n)
Version 0.6.8 J AUTOMOTIVE

Examples: HelloCM

¢ New example for topic based synchronization
¢ New job mechanism fiir cyclic data publishing on CMNode Side

e Renamed ROS messages and restructured global variables for CMNode and external ROS
Node

GUI

e New menu entry Launch & Start Application
¢ New experimental feature TerminalCmd

e Manages terminals started via CarMaker GUI e.g. menu entry “CM Main GUI -> Extras
-> CMRosIF-> Launch”

e More information see chapter “Infofile Parameterization” and parameter cfg.Features

IPG Automotive GmbH 27 Date: September 10th, 2021

