

Date: 2018-08-16

Author: Stefan Hagenmüller, CarMaker Service, Germany

Release No.: CM-7.0.1

IPG Automotive GmbH • Bannw aldallee 60 • 76185 Karlsruhe • w ww.ipg-automotive.com

CarMaker Tips & Tricks No. 4-005
Extracting RGB information from images provided

by the Camera Raw Signal Interface

Extracting RGB information from images provided by the Camera Raw

Signal Interface

This document describes an easy way to extract the RGB information for each pixel from images generated

by the camera module and transferred with the help of a VDS channel. This example is based on the VDS

standalone client C-Code example provided with the CarMaker installation. There are just very few steps

necessary.

Technical Background

The Video Data Stream provides through its channels a continuous stream of pixel data. This data can

have several formats e.g. depth, RGB, raw and many more. This example works with RGB data.

Solution

For better comprehension the used environment should be configured as simple as possible. The

configuration of a VDS channel is done within the VDS.cfg file of the Movie folder. If there’s no such file

available at the moment, you can let one be created by the Vehicle Data Set (Sensors / Camera RSI / Edit

VDS Configuration). In terms of keeping it simple we'll use a pixel grid of just 4 pixels (width of 2 and height

of 2) in total. In order to avoid getting to much data in a very short period of time, we’ll set the frame rate to

1 fps. Please see the following picture (Fig.1) to figure out how this simple configuration could look like.

Fig. 1: VDS.cfg for the used example

 Seite 2

To identify which channels contain which color tones, additional software tools (like GIMP) can be used.

Therefore, the 4 pixels contain the following values for RGB:

1. Pixel: (203 / 226 / 255)

2. Pixel: (165 / 185 / 252)

3. Pixel (88 / 88 / 89)

4. Pixel (88 / 88 / 88)

Fig. 2: RGB Code of each pixel measured with GIMP

The IPGMovie Manual describes how to compile and run a VDS Standalone Client (Chapter 5.4: Video

Data Stream Client). The example client, which is located in the installation directory, can be found here:

 / <InstallDir> / hil / <version> / Examples / VDS / vds-client-standalone.c

The example standalone client is prepared to handle depth information, figuring out which is the closest

pixel to the virtual camera lens. For the purpose of checking the RGB channel information, there are some

small modifications in the example template to be made. Since the standard example uses depth

information we have to modify the strcmp part so that the image type (ImgType) corresponds to “rgb”

instead to “depth”. In addition, there are some slight changes within the Variables for Image Processing.

The main data processing code is inside the if-case

29: if (len == ImgLen) {
… :
50: }

The corresponding changes are marked as bold letters in the following C-Code example.

 Seite 3

1: static int
2: VDS_GetData(void)
3: {
4: int len = 0;
5: int res = 0;
6:
7: /* Variables for Image Processing */
8: char ImgType[64];
9: int ImgWidth, ImgHeight, Channel;
10: float SimTime;
11: int ImgLen;
12: int Pixel;
13: int ColorChannel;
14: float *f_img;

15:
16: if (sscanf(VDScfg.sbuf, "*VDS %d %s %f %dx%d %d", &Channel,
17: ImgType, &SimTime, &ImgWidth, &ImgHeight, &ImgLen) == 6) {
18: if (0)
19: printf ("%6.3f %d: %8s %dx%d %d\n",

 SimTime, Channel, ImgType, ImgWidth, ImgHeight, ImgLen);
20: if (ImgLen > 0) {
21: if (strcmp(ImgType, "rgb") == 0) {
22: char *img = (char *)malloc(ImgLen);
23: for (len=0; len<ImgLen; len+=res) {
24: if ((res=recv(VDScfg.sock, img+len, ImgLen-len, VDScfg.RecvFlags))
< 0) {
25: printf("VDS: Socket Reading Failure\n");
26: break;
27: }
28: }
29: if (len == ImgLen) {
30:
31: /* Initialize Pixel and ColorChannel information */
32: Pixel = 1;
33: ColorChannel = 0;
34:
35: /* Walk through all ColorChannel of each pixel */
36: while (ColorChannel < ImgWidth * ImgHeight * 3) {
37:
38: /* Get the information of each ColorChannel */
39: unsigned char R = img[ColorChannel + 0];
40: unsigned char G = img[ColorChannel + 1];
41: unsigned char B = img[ColorChannel + 2];
42:
43: /* Print the information */
44: printf("Time = %f, Pixel No. = %d,

 Channels: R = %d, G = %d, B = %d \n",
 SimTime, Pixel, R, G, B);

45:
46: /* Prepare for next loop step */
47: ColorChannel = ColorChannel + 3;
48: Pixel++;
49: }
50: }

51: free (img);
52: }
53: }
54: VDSIF.nImages++;
55: VDSIF.nBytes += len;
56: } else {
57: printf ("VDS: not handled: %s\n",VDScfg.sbuf);
58: }
59:
60: return 0;
61: }

 Seite 4

The distribution of the pixel information is shown in the IPGMovie Manual, Chapter 5.5 “Detailed Description

of the Output Formats”. Therefore, the lines

36: while (ColorChannel < ImgWidth * ImgHeight * 3.0) {

37:
38: /* Get the information of each ColorChannel */
39: unsigned char R = img[ColorChannel + 0];
40: unsigned char G = img[ColorChannel + 1];
41: unsigned char B = img[ColorChannel + 2];

are used to walk through each color channel (channel information of R, G and B) and save the information

within the unsigned char variables R, G and B.

The printf function additionally prints the output to the shell

43: /* Print the information */
44: printf("Time = %f, Pixel No. = %d,

 Channels: R = %d, G = %d, B = %d \n",
 SimTime, Pixel, R, G, B);

After compiling the new executable via the command

gcc vds-client-standalone.c -o vds-client-standalone

for Linux or

 gcc vds-client-standalone.c -o vds-client-standalone -lws2_32

for Windows we can run the program in the shell and obtain the contents of the RGB channels. The gathered

information in the shell equals that which we’ve measured in the picture previously in GIMP. Fig. 3 shows

the console output generated by the printf-calls.

Fig. 3: Shell output for pixel 1-4

 Seite 5

To verify the color code for one particular pixel the internet provides a lot of color code generators that are

able to show the proper color (Fig. 4).

Fig. 4: Source: https://www.w3schools.com

