

Date: 2018-05-02

Author: Zhou Huang, CarMaker Service Team Germany

Release No.: CarMaker 6.x – 7.x

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

CarMaker Tips & Tricks No. 4-004
User Visualization for IPGMovie using TclGeo

User Visualization for IPGMovie using TclGeo
If you have any special visualization need in IPGMovie, a TclGeo script could be an option for achieving

that. It offers the opportunity to draw in IPGMovie some simple geometries for static objects or display

dynamic animated objects depending on parameters or movements of the vehicle or rather any other

calculated quantities during the simulation.

1. How to select a TclGeo file?

A TclGeo f ile could be selected on several places and w ill be passed to IPGMovie for evaluation. On successful

evaluation, the content w ill be immediately visualized in the IPGMovie 3D World.

Locations to select a TclGeo file:

 The Scenario Editor of CarMaker. When you long click on the button of “3D Preview ” in Scenario Editor, you

w ill open the settings for visualization parameters. There is an option for selecting a TclGeo file.

 Vehicle Data Set GUI/Misc./Movie Geometry

 Seite 2

 Traff ic GUI/General Parameters/Movie geometry + Object parameters

 How ever, in the last tw o cases a TclGeo file is referenced trough another 3D geometry f ile.

The f ile formats supported by IPGMovie for geometry objects are *.obj, *.mobj, *.dae, *.kmz and *.tclgeo (script

language Tcl/Tk).

It is possible to include a *.tclgeo f ile into a 3D geometry f ile, e.g. in an *.obj f ile, as the follow ing show s:

1: ### BEGIN IPG-MOVIE-INFO

2: # Include YYY.tclgeo

3: ### END IPG-MOVIE-INFO

Please note that the *.tclgeo and *.obj f iles should be in the same folder.

Alternatively, an *.obj f ile can be also referenced in a *.tclgeo f ile by the follow ing approaches:

1: ### BEGIN IPG-MOVIE-INFO

2: # Include XXX.obj

3: ### END IPG-MOVIE-INFO

2. Application Examples

Display of Vehicle Velocity

The following TclGeo code example demonstrates how to display the current velocity over the ego vehicle

in IPGMovie.

 Seite 3

1: ### BEGIN IPG-MOVIE-INFO

2:

3: ### END IPG-MOVIE-INFO

4: proc DrawVehicle {} {

5: global Qu

6: # Add your code here

7: glDisableLighting

8: glEnableTexture2DModulate

9: gl color 1 0 0 1; # red

10: set velocity [format %.2f $Qu(Vhcl.v)]

11: OGL drawtext sans-bold "Velocity = $velocity m/s" -center \

12: -pos 2.0 0.0 2.0 -dir 0 -.25 0 -up 0 0 .25

13: glDisableTexture

14: glEnableLighting

15: }

16:

17: return -1

Line 1 - 3:

The quantities used in *.tclgeo files should be subscribed at the beginning. Since the ego vehicle velocity

is initially subscribed to IPGMovie, there is no need to subscribe it again.

Line 5:

In order to access the quantity of the ego vehicle velocity “Vhcl.v” that is from CarMaker Data Dictionary,

it is necessary to announce the corresponding namespace “Qu”.

Line 7, 8, 13, 14:

In order to show the text in the correct color, the lighting effect should be disabled and the textured surfaces

shades need to be enabled.

Line 9:

Definition of text colors. The fourth parameter defines the color intensity from 0.0 to 1.0 (full intensity). The

first three parameters (RGB) for several other colors are listed in the following table:

Line 11, 12:

The default coordinate system of the callback “DrawVehicle” is Fr1 (information about the definition of Fr1

please see Reference Manual). The current velocity is displayed at the position of 2.0m in front of and

2.0m higher than the origin of Fr1.

Besides of the callback “DrawVehicle”, there are also other basic available callbacks (TclGeo procedures)

that are automatically called for each frame in IPGMovie, see the table in appendix. For example, if

something related to traffic needs to be drawn in Frame Fr0, the TclGeo procedure named

DrawBackground should be called.

Line 17:

If a *.tclgeo file is not referenced trough another 3D geometry file, this line must to be added at the very

end: return -1.

Color Parameter

Green 0 1 0

Cyan 0 1 1

Black 0 0 0

Blue 0 0 1

Yellow 1 1 0

 Seite 4

Draw Vehicle Trajectory

The following TclGeo code example shows how to draw the driven trajectory of ego vehicle in IPGMovie.

1: ### BEGIN IPG-MOVIE-INFO

2: # Subscribe Vhcl.PoI.x Vhcl.PoI.y Vhcl.PoI.z

3: ### END IPG-MOVIE-INFO

4:

5: set PoI(Data) ""

6: set PoI(Width) 0.05

7: set PoI(Height) -0.4

8:

9: proc DrawStart {} {

10:

11: global Qu

12: variable PoI

13: # Add new data and visualize driven trajectory

14: if { $PoI(Data) eq "" || ![dict exists $PoI(Data) $Qu(Time)]} {

15: dict set PoI(Data) $Qu(Time) [list $Qu(Vhcl.PoI.x) $Qu(Vhcl.PoI.y) \

16: [expr {$Qu(Vhcl.PoI.z)+$PoI(Height)}] \

17: $Qu(Vhcl.Distance) $Qu(Vhcl.Yaw) $Qu(Vhcl.Roll)]

18: }

19:

20: gl pushmatrix

21: glDisableLighting

22: gl color 0 1 0 1; #Green

23: gl begin quad_strip

24:

25: foreach key_act [lsort -real [dict keys $PoI(Data)]] {

26: set elm [dict get $PoI(Data) $key_act]

27: if {([lindex $elm 3] > 0.0 && [lindex $elm 3] <= $Qu(Vhcl.Distance))} {

28: set val_x [expr {0.5*$PoI(Width)*sin([lindex $elm 4])}]

29: set val_y [expr {0.5*$PoI(Width)*cos([lindex $elm 4])}]

30: set val_z [expr {0.5*$PoI(Width)*sin([lindex $elm 5])}]

31:

32: gl vertex [expr {[lindex $elm 0]+$val_x}] \

33: [expr {[lindex $elm 1]-$val_y-tan($val_z)}] \

34: [expr {[lindex $elm 2]-$val_z}]

35:

36: gl vertex [expr {[lindex $elm 0]-$val_x}] \

37: [expr {[lindex $elm 1]+$val_y-tan($val_z)}] \

38: [expr {[lindex $elm 2]+$val_z}]

39: }

40: }

41:

 Seite 5

42: gl end

43: glEnableLighting

44: gl popmatrix

45: }

46:

47: return -1

Line 1 - 3:

Some quantities do not need to be specifically subscribed, since IPGMovie will do it initially. But these

quantities need to be subscribed manually using “#Subscribe” between the beginning and the end of “IPG-

MOVIE-INFO”, because they are not initially subscribed.

Line 20, 44:

They are the same as the OpenGL commands “gl pushmatrix” and “gl popmatrix”. They are used for

pushing the current matrix stack down by one, duplicating the current matrix and poping the current matrix

stack, replacing the current matrix with the one below it on the stack.

Line 21, 43:

In order to show the text in the correct color, the lighting effect should be disabled.

Line 23:

The command “gl begin” is always used together with “gl end”. The mode “quad_strip” draws a connected

group of quadrilaterals. One quadrilateral is defined for each pair of vertices presented after the first pair.

Line 32 - 35:

Specifies the coordinates of vertexes.

Draw Velocity Arrow

This example shows you how to present the current velocity of ego vehicle by using an extendable dynamic

arrow.

1: ### BEGIN IPG-MOVIE-INFO

2:

3: ### END IPG-MOVIE-INFO

4:

5: proc DrawVehicle {} {

6:

7: global Qu

8: set length [expr {$Qu(Vhcl.v)*3.6/75}]

9:

10: gl pushmatrix

11: gl translate 0 0 2.0

12: gl rotate 90 0 1 0

 Seite 6

13: gl material f+b a+d 1 0 0 1; # red

14: gl Cylinder 0.05 0.05 $length 16 1

15: gl translate 0 0 $length

16: gl Cylinder 0.1 0 0.25 16 1

17: gl popmatrix

18: }

19:

20: return -1

Line 10, 17:

The command “gl pushmatrix” is always used together with “gl popmatrix”. They are necessary when

coordinate needs to be translated or rotated.

Line 11, 12:

Translation and rotation of the current coordinate system (Fr1).

Line 13:

It defines the material on the front and back faces (f+b) of the object. It is ambient and diffuse (a+d). The

color can be defined by RGBA.

Line 14:

Draws a cylinder (part of an arrow) with the length that depends on the current velocity of ego vehicle.

3. Appendix

The following table shows all the available callbacks for each frame in IPGMovie.

Callback 2D/3D Frame Draw

PostLoadScene object

DrawCamera background

DrawStart 2D Fr0 road

DrawBackground 3D Fr0 traffic

DrawVehicle

DrawVehicleA

DrawVehicleB

3D Fr1 vehicle

DrawTrailer

DrawTrailer2
3D trailer

DrawEnd 3D

DrawOverlay 2D

The procedure of PostLoadScene will be called for loading some movie objects only one time at the

beginning of a simulation.

Disclaimer:

Using TclGeo for IPGMovie visualization extensions needs the programming knowledge of Tcl and

OpenGL.

Any added TclGeo file could possibly create unexpected visualization effects. Therefore, this functionality

is not officially supported. Any reports related to the usage of TclGeo files may not be processed.

All rights reserved by IPG Automotive GmbH.

