

Date: 2017-07-20

Author: Sophie Schäferle, CarMaker Service Team Germany

Release No.: <= CarMaker 6.x (example for CarMaker 6.x)

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

CarMaker Tips & Tricks No. 4-002
Postprocessing with Matlab

How can I use Matlab for postprocessing of CarMaker simulation

results?

Sometimes I speak to CarMaker users that have managed to model very thorough, complex TestRuns,

but aren't sure how to go from there. Successfully completing a variety of virtual experiments may be a

crucial element of today's development process, but not very effective if the produced data isn't

evaluated.

There are several methods for evaluating simulation results. Along with using IPGControl or Concerto,

CarMaker offers an excellent interface to MATLAB with which data can be exported to the MATLAB

workspace. Since MATLAB is a very popular option, I wanted to show you how to upload your data using

an example.

So first I need a fully parametrized TestRun that I can simulate and generate results with. I'm going to use

the CarMaker example TestRun “Braking”, which can be found in the product examples via

Examples/VehicleDynamics/Braking/Braking. In this example I want to save the data of the entire

TestRun, so in the field labelled “Storage of Results”, I'm going to set the mode to “Save all”. If you want

to know how the other storage modes work, you can have a look in the User's Guide.

Now I can run the simulation! After the simulation has come to an end, I can go to the “SimOutput” folder

of my project directory <ProjectFolder>/SimOutput/<ClientID>/<Date> and I'll see that a result file with an

“.erg” ending and its corresponding infofile have been generated.

So as off now, I'm going to work with MATLAB.

To find out which versions of MATLAB are compatible with your current CarMaker version, just

check the Release Notes.

After opening MATLAB, I need to make sure that my working directory is the “src_cm4sl” folder of my

project directory. In this folder, there's a file called “cmenv.m” that you need to run. After it's run

successfully, the MATLAB search path is configured and CarMaker is connected.

Seite 2

Now it's time to upload the result file to the MATLAB workspace. First, select a variable name that will

represent your data - I'm going to use “a”. Using the following command, I'm going to assign my result file

to my workspace variable “a” using the “cmread” command:

After /SimOutput/ be sure to specify the correct path to your result file and don't forget to include the file

ending. In case you aren't sure what the absolute path is, you can also just type a = cmread, press

“enter” and a browser will open within which you can navigate to your result file.

In the command window you will see that a list with all of the output quantities appears and in the

workspace, on the right side, your variable has been assigned a matrix.

Clicking on the variable (in this case “a”) shows you the interior of the struct. This is a list of all the output

quantities that you could also see in the command window.

1: a=cmread('../SimOutput/<ClientID>/<Date>/<ResultFileName>.erg')

Seite 3

When you click on one specific quantity, there are several fields: name, unit, nstates (number of different

states that the quantity can have), firststate (start value of the quantity) and data.

To see the exact values of a quantity, select “data”.

Now that you've loaded the results into MATLAB, there are endless ways of working with them. Here are

just two examples:

 Displays the contents of a quantity

 Plots two quantities against one another

You can find further information regarding this topic either in the CarMaker User's Guide or online within

the MATLAB help page.

I hope you learned something out of today’s entry and feel confident in using MATLAB for

postprocessing!

1: disp(<Variable>.<QuantityName>)

2: plot(<Variable>.<QuantityName>.data , <Variable>.<QuantityName>.data):

