

Date: 2019-11-20

Author: Chandra Sekar Venkataramani, IPG Solutions Engineering, Germany

Release No.: CM-6.x to CM-8.x

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

CarMaker Tips & Tricks No. 3-013
How to improve portability and code exchange of C-code

extensions?

Improving portability and code exchange of C-code extensions

This is a guide on integrating user’s C-code extensions. The example focuses primarily on best practices

for extending the CarMaker folder structure, the steps to improve portability across versions and ease

code exchange by compiling the C-code extension as a library

Technical Background

CarMaker as an open-integration platform provides users the possibility to extend the source code, either

in the src or src_cm4sl folder of a CarMaker project, to obtain a custom project-specific application.

Over the project lifecycle, it may be necessary to

 to update CarMaker to a newer version, after which it is typically necessary to repeat the user’s

C-code integration. Depending on the approach followed, this task of repeating the C-code

integration could be tedious, time-consuming and error-prone.

 to share code extensions with project partners/customers without providing the source code.

This approach also allows easily distinguishing between development & end-use environments and to

generate libraries for different target architectures (Linux, Windows).

Solution

The following steps provide an outline of a best practice that can address both these points on portability

and code exchange. They are explained with a sample implementation that prints the local time at the

instant of the function call.

Step 1: After creating a CarMaker project with Sources/Build Environment, manually create a sub-folder,

src_UserCode. Unpack the contents of the .zip (i.e. MyTimer.c, MyTimer.h and Makefile) into this folder.

Step 2: Perform ‘make’ and ‘make install’ in <ProjDir>/src_UserCode folder

 make - compiles the user code into a library file

 make install – makes copies of user code’s library and header files to the lib and include folders
of CM project directory

Seite 2

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

Figure 1: Compiling user-code as library and linking it to new CarMaker.exe

Step 3: Add code snippets to User.c and Makefile in src folder. This typically involves

 including header files in User.c

include "../include/MyTimer.h"

 adding function calls to user code in User.c (e.g. Init, DeclQuants, Calc)

int

User_Init (void)

{

 MyTimer_Init();

 return 0:

}

void

User_DeclQuants (void)

{

 MyTimer_DeclQuants();

}

int

User_TestRun_Start_atEnd (void)

{

 MyTimer_TestRun_Start_atEnd();

return 0;

}

Seite 3

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

int

User_Calc (double dt)

{

 if (SimCore.State! =SCState_Simulate)

return 0;

if (SimCore.CycleNo%10000==0) {

 Log(“MyTimer_Calc() is called here\n”);

 MyTimer_Calc();

}

return 0;

}

 adding the previously compiled lib to the list of libraries to be linked in Makefile

LD_LIBS += ../lib/MyLibs_8.1/$(ARCH)/MyTimerCode.a

The version number <ver> in sub-folder ‘MyLibs_<ver>’ is required, only if the code has a dependency to

the CarMaker version. Else, it is also sufficient to have a version-independent sub-folder ‘MyLibs’

Now, perform ‘make’ in <ProjDir>/src folder to generate a new CarMaker executable

To update to a newer CarMaker version, just update the CM version number in Makefile of src_UserCode

folder and repeat Steps 2 & 3.

To share code, it is sufficient to share the final CarMaker project folder without the src_UserCode.

All rights reserved by IPG Automotive GmbH.

