

Date: 2019-10-30

Author: Leo Heinz, IPG Solutions Engineering (Germany)

Release No.: CM-6, CM-7, CM-8

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

CarMaker Tips & Tricks No. 3-011
Detect Traffic Lights

Disclaimer:
This example aims to demonstrate a way to extend the existing CarMaker sensor models to additionally
detect traffic lights that were defined in Scenario Editor. Some knowledge of working in C code is expected.
This example focuses on the existing CarMaker interface and does not further explain the measures taken
to ensure robustness.

The used interface might be subject to change in future CarMaker Releases. As opposed to the examples
coming with our CarMaker installation, this one is not maintained or further supported by the IPG Support
Team.

All rights reserved by IPG Automotive GmbH.

How to detect Traffic Lights based on Traffic Sign Sensor?

This is a demonstration of using the Generic model class and of creating an extension based on existing

CarMaker models. The result will be a parameterizable model that creates new UAQs similar to what you

know from the Traffic Sign Sensor.

Technical Background

The Traffic Sign Sensor compares best to an idealized camera with sign recognition algorithm, relaying

the gathered information to a human driver. Such a camera-based recognition could also deliver

information of traffic lights within its vision range, which can be used for powertrain economy optimization

or higher levels of automated driving. This example shows how to extend the existing ideal sensor

information to cover such use cases.

Solution

It was mentioned before that the extension builds on the existing Traffic Sign Sensor. This reduces the

number of parameters needed greatly, as the general parameterization of name, position, etc. (compare

 Page 2

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

Figure 1: Traffic Sign Sensor in Vehicle Data Set

highlighted area in Figure 1) can be inherited. Aside from that, the sensor needs only little additional

information, as shown in Figure 2.

The additional parameter (1) activates the Generic model extension by defining the execution point. It could

also be set as Additional TestRun Parameter or in SimParameters. The additional parameters group (2)

contains the name of the “parent” Traffic Sign Sensor, the individual parameters will be described with the

functional explanation. The extension supports as many Traffic Light Sensors as Traffic Sign Sensors are

defined or only a selection of them.

Figure 2: Additional Parameters for Traffic Light Sensor

How do Generic plugin models work?

A model of type “Generic” is used, when the CarMaker environment does not inherently provide a fitting

model interface, extending the sensor model functionality being a good example. As there is no distinct

interface, a Generic plugin model has no particular position in our main simulation cycle.

The interface is instead defined by directly accessing other signals for reading and writing, be it directly on

C code level or via DVA. The model selection and execution point are defined simultaneously by setting

an additional parameter “GenericPlugin.<ModelName>.AbsPlace” (as shown in Figure 2). The possible

 Page 3

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

execution points are similar to Direct Variable Access points. A complete list as well as additional options

for Generic models can be found in our Programmer’s Guide appendix “Generic Plug-in Models”.

How does the model detect Traffic Lights?

For each Traffic Light Sensor the sensor location and orientation in the 3D scene is read from the

corresponding Traffic Sign Sensor. The data is available on the C code level by including

“Vehicle/Sensor_TSign.h”. The corresponding excerpt is shown here:

The complete list of traffic lights in the scene, their respective ID, location and state can be obtained from

“TrafficLight.h”. Here is an excerpt of that section:

The orientation of the Traffic Light is slightly more difficult to obtain. This information is stored with the road

information, the global object ID of the traffic light is key to easily access the information. In the demo

model, access to the road information is encapsulated in its separate function “int

TLSensor_GetTLOrientation (double *orientation, struct tTrfLightObj TrfLight)” with the output storage

pointer “orientation” describing the rotation around x, y and z and the traffic light object as defined in the

header mentioned above.

Note that the angle obtained from IPGRoad5 is given in degrees and only around the z-axis, as traffic lights

are assumed to be positioned parallel to the global z-axis.

With the location and orientation of both the sensors and the traffic lights established, determining the

detection can be solved with geometry. For each sensor and each traffic light, first the relative position of

the traffic light in the sensor frame (FrS) is established and compared to the vision restrictions of range

and field of view (FoV). The second filter is the relative orientation of the traffic light, as those facing away

from the sensor could be ignored.

36: typedef struct tTSignSensor {

37: tBdySensor BS; /* Body sensor */

38: double range; /* max range of beam [m] */

39: double alpha; /* beam azimuth [rad] */

40: double theta; /* beam elevation [rad] */

41: double rot_zyx[3]; /* rotation of sensor [rad] */

42: double rot_zyx_ext[3]; /* additional rotation of sensor [rad] */

43: double t_ext[3]; /* additional travel of sensor in FrB [m] */

44: double BS_Pos_0[3]; /* inertial sensor position with ext. motion */

45: double Tr2Fr0[3][3]; /* transformation matrix sensor frame to inertia

46: (FrS -> Fr0) */

47: double TimeStamp; /* time-stamp of sensor calculation */

48: int UpdRate; /* update rate of sensor signals [Hz] */

49: int nSign; /* number of detected signs */

50: tSign Sign[ROAD_MAX_TRFSIGNS];

51: } tTSignSensor;

34: typedef struct tTrfLightObj {

35: char *Name; /* Traffic light name */

36: tMode Mode;

37: tTLState State;

38: int Id; /* Traffic light Id */

39: int ObjId; /* Object Id of all road elements */

40: double Pos_0[3]; /* Global traffic light position in Fr0 */

41: double tRemain; /* Remaining time of the actual light state */

42: } tTrfLightObj;

43:

44: typedef struct tTrfLight {

45: int nObjs; /* Number of all traffic lights */

46: tTrfLightObj *Objs; /* Traffic light objects variable handle */

47: } tTrfLight;

48:

49: extern struct tTrfLight TrfLight;

 Page 4

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

Figure 3: Definition of Angle of Detection

Figure 3 shows a sketch of a traffic light within the sensor range and FoV. The angle of detection is the

angle between the orientation of the traffic light and the orientation of the sensor. The use of two

parameters “TLSensor.<SName>.DtctAngle_z_Max” and “TLSensor.<SName>.DtctAngle_z_Min” (both in

degrees) allows for an asymmetrical orientation filter. The angle of detection is defined counter-clockwise,

so the minimum angle of detection is expected as negative value.

The last parameter that also acts as a filter is “TLSensor.<SName>.TrackLimit”. This is the numerical limit

of the list of traffic lights that are being monitored. The list is kept in order of polar distance from sensor to

traffic light, after the previous detection filters are applied. Several helper functions deal with adding and

moving entries in this list.

How can the model be selected?

To use the model extension in your CarMaker project, first make sure you have the project option “Sources

/ Build Environment” selected in the project creation or update window. Then copy the files “TLSensor.c”

and “TLSensor.h” into your projects “src” folder. In “User.c” the header file “TLSensor.h” needs an include

call and the function “TLSensor_Register” has to be called in the “User_Register” function as shown in the

code snippet below:

For the manual make process also add the source “TLSensor.c” to the Makefile list of objects to be

compiled (either directly to line 25 or as “+=” addition as shown in line 26). As shown in the excerpt below,

the extension “.O” is used to ensure a precompiled object from the source file is generated.

92: #include "User.h"

93: #include "TLSensor.h"

[…]:

213: int

214: User_Register (void)

215: {

216: TLSensor_Register();

[…]:

221: return 0;

222: }

25: OBJS = CM_Main.o CM_Vehicle.o User.o

26: OBJS += TLSensor.o

 Page 5

IPG Automotive GmbH • Bannwaldallee 60 • 76185 Karlsruhe • www.ipg-automotive.com

Build a new CarMaker executable with these code changes. Keep in mind, that you can have multiple

model extensions at the same time. Simply keep their header reference and register function in parallel.

Select a vehicle with a Traffic Sign Sensor or add a Traffic Sign sensor to your vehicle. Then in the “Misc.”

tab add the additional parameters described above (compare to Figure 2). The scenario needs to have at

least one detectable traffic sign and at least one traffic light for the Traffic Light Sensor to properly initialize.

With everything connected, the additional quantities can be found and used as those of any other sensor

model, as Figure 4 shows for an example run in CarMaker 8.0.2.

Figure 4: Example scene in IPGMovie with Signals in IPGControl, CarMaker 8.0.2

But does it also work for CarMaker for Simulink?

Like any other C code extension to CarMaker, this model can also be integrated for use with CarMaker for

Simulink. To do so, work in the folder “src_cm4sl” of your project instead of “src”. Also set the target Matlab

version and its installation directory in the section shown below of the Makefile:

Compatibility to CarMaker versions 6 and 7

Between major releases the interfaces receive updates for improvement or to connect to new functions

and models. Two points need to be highlighted regarding the Traffic Light Sensor extension:

▪ With CarMaker 7.0 the Paths in IPGRoad received an update, changing the way our road remembers

the ego vehicle path. To compensate the initialization in “TLSensor_New” contains a comment with

both versions of reading the path for further usage.

▪ With CarMaker 8.0 the names in enumerations and lists of IPGRoad received an overhaul. To

compensate, the filter function “TLSensor_IsValidType” contains a comment with both versions.

24: MATSUPP_MATVER = R2016a

25: MAT_HOME = C:/Program\ Files/MATLAB/R2016a

