Customer Usage Based Validation of Transmission Systems using CarMaker
Agenda

- Transmission Systems & Components
- Transmission Requirements
- Customer Profile and Method Validation
- Analysis of Customer Diagnostic Readout Data
- New Concept and Utilization
- Software Functions and Control
- Going from Test Code Based Req. to Customer Usage
- TP7
- Future Rigs
- Conclusion
Transmission Systems & Components

- Manual Gearbox
- Automatic Gearbox
- AWD system:
 - PTU/RDU
 - Propeller Shaft/Joints
 - AOC (Active On-Demand Clutch)
- Drive Shafts/Joints
- Transmission for Electric Drive:
 - EFAD/ERAD (Electric Front Axle Drive/Electric Rear Axle Drive)
 - Hybrid Transmissions
 - Transmission Systems for 48V
- Differential
- P-lock System
Transmission Requirements

"Population Density"

Stress – Customer Load

Component Strength

No failures

"Damage Load"
Transmission Requirements

"Population Density"

Stress – Customer Load

Component Strength

"Damage Load"

Failures will Occur!

“Population Density”

Stress – Customer Load

Component Strength

"Damage Load"
Transmission Requirements - Validation Pyramid

- **Vehicle test**
 - Final vehicle verification, no failures should appear
 - Multipurpose test

- **System sign off test x-SKLT**
 - Suitable for customer usage correlation
 - Should exhibit relevant correlation with customer usage of the tested powertrain for the most important design factors i.e. transmitted torque
 - Requires adaptive test code

- **Component tests**
 - Components should be tested at highest damage level to cover all customers and applications and the system requirement
 - System suppliers responsible for component testing
 - Block testing suitable
Transmission Requirements

At VCC the Transmission System Requirement is based on the customer usage
Customer Profile and Method Validation

- City - (inner city driving – mostly up to 50 km/h)
- Rural - (outside city and country road driving)
- Mountain - (mix of hilly driving)
- Gravel - (mix of gravel roads up to 80 km/h)
- Highway - (mix of driving 90-130 km/h)
- Autobahn - (high speed driving)
- Start Event - (start on plain ground and in slope)
- Trailer - (mix of trailer driving situations)

Road Condition Distribution

<table>
<thead>
<tr>
<th>Condition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>60%</td>
</tr>
<tr>
<td>Wet</td>
<td>30%</td>
</tr>
<tr>
<td>Snow/Ice</td>
<td>10%</td>
</tr>
</tbody>
</table>

Driving Style

- Sportage
- Average
- Mild

1st gear tooth-flank duty values

- trailer 2400kg
- trailer 2000kg

- Road to Rig driver
- Mix driver
- Plain city driver
- Plain autobahn driver
- Plain rural road driver
- Plain mountainous road driver
- City driver
- City-trailer driver
- Rural driver
- Rural-trailer driver
- Mount.driver
- Mount-trailer driver
- Gravel driver
- Gravel-trailer driver
- Highway driver
- Highway-trailer driver
- Autobahn driver
- Autobahn-trailer driver
- Trailer driver
- Average driver

Apply & Innovate, September 2018, Karlsruhe

- Jan Andersson, Transmission Department, Volvo Car Corporation -
Analysis of customer diagnostic readout data

By comparing results from Vehicle ReadOut Data and Simulation Results the method has been Validated
Market Differences, Vehicle Speed

Vehicle Speed Distribution, Average Customer

Apply & Innovate, September 2018, Karlsruhe
- Jan Andersson, Transmission Department, Volvo Car Corporation -
Customer Profile and Vehicle Validation

Speed profile for predefined customer profiles

- Plain city
- Plain autobahn
- Rural
- Road to rig
- Hway w much trailer

Apply & Innovate, September 2018, Karlsruhe
- Jan Andersson, Transmission Department, Volvo Car Corporation -
Simulated 90 percentile vs Customer

Comparison Duty Value per Gear

<table>
<thead>
<tr>
<th>Gear</th>
<th>DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1×10^{20}</td>
</tr>
<tr>
<td>2</td>
<td>1×10^{21}</td>
</tr>
<tr>
<td>3</td>
<td>1×10^{22}</td>
</tr>
<tr>
<td>4</td>
<td>1×10^{23}</td>
</tr>
<tr>
<td>5</td>
<td>1×10^{22}</td>
</tr>
<tr>
<td>6</td>
<td>1×10^{23}</td>
</tr>
<tr>
<td>7</td>
<td>1×10^{23}</td>
</tr>
<tr>
<td>8</td>
<td>1×10^{23}</td>
</tr>
</tbody>
</table>

Max 90%ile DV per Gear for each market
Required DV based on simulations
New Concepts & New Utilization

- Car Pooling
- AD Vehicles
- Hybrid Vehicles
- Electric Vehicles
- Dedicated Vehicle Usage
Software functions and control

• Torque Limit Functions
• Safety Functions for Special Situations
• Boosting and Regeneration
• Driveability Control
Going from Test Code based Req to Customer Usage

- Constant Torque Testing (Wöhler testing)
- Block Test
- Speed Profile Test
- Driving Situation Test (CarMaker)
TP7

- CarMaker for vehicle, tyre, road and driver simulation
- AWD rig (incl. wheel slip)
- 4 dynos
 - 3500 Nm / 150 kW
 - 2400 rpm / 270 km/h
 - Low moment of inertia (0.93 kgm²)
- Complete driveline incl. engine
TP7

- **DSKLT**
 - Driveline System Key Life Test
 - Focus on rear wheel loads (PTU/RDU)
 - Haldex clutch (AOC clutch)

- **ATSKLT**
 - Aut. Transm. System Key Life Test
 - Focus on transmission loads for all gears

- **MTSKLT**
 - Man. Transm. System Key Life Test
 - Focus on transmission loads for all gears
TP7

TP7 rig measurement

Vehicle measurement at Hällered Proving Ground
Future rigs

• TEM1 - Electric vehicle rig
 – CarMaker for vehicle, tyre, road and driver simulation
 – 3 dynos
 – In: 200 kW dyno, 20000 rpm, 400 Nm
 – Out: 2x200 kW dynos, 2500 rpm, 4000 Nm
 – Low inertia (out) dynos ±15000 rpm/s
 – Overload power/torque 20% 1 min/10 min
 – Climate box (-40°C to +120°C)
 – Battery simulation, 300 kW, 600A, 900V
TEM1

3-dyno configuration
TEM1

2-dyno and E-machine configuration
Conclusion

• Volvo methodology covers customer usage well
• In order to work with customer based requirements dynamic rig simulations are needed
• The trend is to do less work in vehicles and more in test rigs and simulation environments
Thank you!