Enhancing ADAS Validation with Automated Search for Critical Situations

Dr. Mugur Tatar
QTronic GmbH

Apply & Innovate Conference, Karlsruhe 2016
Virtual Validation for Automotive Development
Tools and Engineering

QTronic in: Berlin, Stuttgart, München

We help our customers to develop
• faster
• safer
• cost effective

With modern technologies for
• virtual ECUs
• virtual integration
• test and validation

20.09.2016
QTronic Presentation at Apply & Innovate Conference, Karlsruhe 2016
Motivation: ADAS Test and Validation

Interaction of
• Software
• Sensors
• Electronics
• Mechanics

Faults happen...
Important: Find all faults before release

Test and validation required in a large space of situations
Test and validation required in a large space of situations
Assume
- 5 sampling points per parameter, such as acceleration 0..100% sampled at 0%, 25%, 50%, 75%, 100%
- Simulation time / scenario: 10 seconds
- An increasing number of parameters

<table>
<thead>
<tr>
<th></th>
<th>5 parameters</th>
<th>10 parameters</th>
<th>15 parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenarios</td>
<td>3.125</td>
<td>9.765.625</td>
<td>30.517.578.125</td>
</tr>
<tr>
<td>Simulation time</td>
<td>8.7 Hours</td>
<td>3 Years</td>
<td>9677 Years</td>
</tr>
</tbody>
</table>

Conclusion
- Hand-defined scripts: high costs, poor coverage
- Exhaustive testing, Monte-Carlo search: do not scale either

Can intelligent search methods better close the gap?
Automated Search for Critical Situations

Idea
- intelligent generation of 1000s of differing test scenarios
- active attempt to:
 - maximize the state coverage
 - drive the system in “difficult” situations
- parallel simulation on cheap HW (PC)

Benefit
- high coverage
- low efforts for test specification
TestWeaver - Evolutionary Search Strategy

- controllable input
- component fault

inputs u

simulation

state space

reached state
alarm state

outputs y

TestWeaver

Change sub-optimal scenarios to generate worst-cases

Drive the system in states that were not covered before

Reactive generation
- Learn from past situations
- All cases can be reproduced

Software controllers
requirement monitoring

vehicle & traffic model

Test Report

20.09.2016
QTronic Presentation at Apply & Innovate Conference, Karlsruhe 2016
TestWeaver - Test Generation Strategy

Strategy
- Assess state
 - criticality
 - impact on coverage
- Learn from past situations
- Detect “hot spots”
- Search around “hot-spots”
Overview reports for all scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Gear A</th>
<th>Gear B</th>
<th>Clutch A</th>
<th>Clutch B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl7</td>
</tr>
<tr>
<td>2</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl6, sl2</td>
</tr>
<tr>
<td>3</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl10, sl12</td>
</tr>
<tr>
<td>4</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl14</td>
</tr>
<tr>
<td>5</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl16</td>
</tr>
<tr>
<td>6</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl10, sl12</td>
</tr>
<tr>
<td>7</td>
<td>neutral</td>
<td>ok</td>
<td>ok</td>
<td>sl20</td>
</tr>
<tr>
<td>8</td>
<td>ok</td>
<td>ok</td>
<td>sl16</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ok</td>
<td>sl10, sl12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Detailed reports for individual scenarios

Replay in simulation and debug
System State Coverage - Examples

Reached shifts in a 9-gear automatic transmission

after 2000 scenarios about 61000 shifts

Reached engine speed/torque states

after 2000 scenarios

Source code coverage is used in combination with operational state coverage
TestWeaver - Connections to ADAS Simulators

VTD
www.vires.com

CarMaker
www.ipg.de

PreScan
www.tassinternational.com
Crosswind Stabilization for the 2009 S-Class

Active Body Control (ABC) for Crosswind Stabilization

- ABC-software exported from Simulink
- co-simulated with Mercedes-Benz in-house vehicle model
- TestWeaver controls the parameters for:
 - driver manoeuvres
 - wind and road profiles
- generated and analysed 100,000 driving scenarios, each 45 sec. within 3 weeks
 > 2 times faster than real-time

Details in: Klaus-Dieter Hilf et al:
Automated Simulation of Scenarios to Guide Development of a Crosswind Stabilization,
IFAC Symposium Advances in Automotive Control 2010, Munich, Germany
Validation for Bosch ESP® Stabilization Functions

Trailway Swing Mitigation and Crosswind Stabilization

- Bosch ESP®-software exported from Simulink
- Co-simulated with IPG CarMaker vehicle models
- TestWeaver controls the parameters for:
 - driver manoeuvres
 - road profiles
 - wind profiles

Details in:
Transmission Control Units (TCUs) for Automatic Transmissions AT/DCT

- virtual TCUs built with QTronic Silver
- co-simulated in Silver with accurate Mercedes-Benz vehicle models (FMUs)
- TestWeaver
 thousands of scenarios generated and analysed at every software release on several PCs in parallel

See for instance: Stefan Gloss, Milan Slezák, Andreas Patzer: Systematic Validation of over 200 Transmission Variants, in ATZ elektronik 4/2013
Enhancing ADAS Validation with Automated Search for Critical Situations

- Traditional test and validation methods do not scale with the increasing system complexity!
- The automation of search in large parameter / event spaces is a necessity!
- Methods for intelligent search dramatically increase test coverage already used in series development

Benefit

Increased confidence in system correct functioning!
More problems found and corrected in time!
What are virtual ECUs?
“Run on PC like in the car!” - via SiL or vPiL

- Virtual ECUs (vECUs) simulate ECU functionality on a PC.
- They are built using tools like Simulink and TargetLink.
- C code and libraries are generated from a function/module.
- CPU emulation (vPiL) and simulation (SiL) are possible.
- Virtual system test is performed in 10 min.
- Feedback to developers is provided.

ECU

vECU

virtual system test

in 10 min

feed-back to developers

Function / Module Developers
Simulink / TargetLink / C code

C code generation

C code, libs

build for PC

SiL

CPU emulation

vPiL

build for target CPU

hex

Developer’s PC

ECU

in 10 min

feed-back to developers
Silver: virtual ECUs, CAN & plant model simulation
BMW and ZF virtualize the TCU for the ZF 8HP 8-speed automatic transmission with Silver

OEM and supplier exchange compiled objects to build the vTCU

- ‘virtual HiL on a laptop’ for closed-loop system test
- pre-calibration with INCA or CANape
- debugging on C source level

details in: Rui Gaspar, B. Wiesner, G. Bauer: *Virtualizing the TCU of BMW’s 8 speed transmission*
10th Symposium Automotive Powertrain Control Systems, Berlin, September 2014
Virtual Powertrain Integration - Mercedes-Benz

Drivability Calibration - Virtual Powertrain on PC

- closed-loop simulation

 \[\text{vECU} + \text{vPCU} + \text{plant models} \]

- full diesel engine vECU via chip simulation on PC - vPiL

- powertrain control vPCU via code compiled for PC - SiL

Software Development Process
Agile Development with Virtual ECUs

- software requirements
- functional specification
- detailed design

- verification
- system test
- integration test
- module implementation test

- acceptance test

...requires...

Good, validated specification

Good, validated implementation

Easy iteration at higher levels of system integration for every engineer on his PC

QTronic Presentation
vECUs - Mercedes-Benz Powertrain Calibration

View inside a diesel ECU

- vECU simulated with **QTronic Silver** via chip simulation
- SW modules and connections between them
- left supplier modules
- right OEM modules
- white HW interface modules

Customers 2016