Model-Based Testing of Driver Assistance Systems for Counterbalance Forklift Trucks
Motivation for the Introduction of Model-Based Testing at Linde Material Handling

Linde Safety Pilot Driver Assistance System

Modeling Requirements for Testing the Linde Safety Pilot Driver Assistance System

Model Validation

Model-Based Testing Framework
Evolution of Software-Testing at LMH

Electronic Control Unit (ECU) Testing

<table>
<thead>
<tr>
<th>Vehicle-Based</th>
<th>Model-Based</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual Testing</td>
<td>Fully Automated Testing</td>
</tr>
<tr>
<td>Reporting -</td>
<td>Reporting +</td>
</tr>
<tr>
<td>Time -</td>
<td>Time ++</td>
</tr>
<tr>
<td>Quality -</td>
<td>Quality ++</td>
</tr>
<tr>
<td>Flexibility -</td>
<td>Flexibility +</td>
</tr>
</tbody>
</table>

Main Drivers to Introduce Model-Based Testing

- More projects
- More variants
- Higher function complexity
- Shorter development cycles
- Stricter regulations e.g. functional safety
- Increased test effort to validate future assistance systems e.g. LSP
Outline

Motivation for the Introduction of Model-Based Testing at Linde Material Handling
Linde Safety Pilot Driver Assistance System
Modeling Requirements for Testing the Linde Safety Pilot Driver Assistance System
Model Validation
Model-Based Testing Framework
Accidents with Counterbalance Forklift Trucks Happen – And Often the Drivers are not Aware Why
Who is Responsible?

Operator

BGV D27- § 8 Stability Against Collapse:
"Counterbalance trucks have to be operated in a way, that stability against collapse is preserved."

Driver

Responsibility of the Forklift Driver
- Load?
- Load center of gravity?
- Maximal allowed lifting height?

Producer

Producers are liable to indicate the stationary carrying capacity in each truck.

![Diagram showing load capacity chart](image)
Stationary Carrying Capacity
Stationary Carrying Capacity is Often Hard to Determine
Linde Material Handling

Linde Safety Pilot - Active
Measured Quantities and Sensors

Axle-Force Sensor

Pressure Sensor

Load Force

Wire-Actuated Encoder

Rear-Axle Force

Lifting Height

Lifting Height
Video LSP-WOM
Outline

- Motivation for the Introduction of Model-Based Testing at Linde Material Handling
- Linde Safety Pilot Driver Assistance System
- Modeling Requirements for Testing the Linde Safety Pilot Driver Assistance System
- Model Validation
- Model-Based Testing Framework
HIL Design
HIL Design – Modeling World
Modeling, Data Acquisition

Responsibility Linde

- Mast+Attachment Data
- Working Hydraulics Model
- Sensor Characteristics
- Steering Model
- Brake Model
- CAN Restbus
- Powertrain Models
 - electric
 - hydraulic
- Powersource Models
 - Battery
 - ICE

Responsibility IPG

DUT

Road Environment
Chassis
Tires
Vehicle dynamics
+ Mast dynamics
Huge Truck Variety

Actual Series BR387/388

<table>
<thead>
<tr>
<th>Capacity</th>
<th>F20</th>
<th>F25</th>
<th>E30</th>
<th>E35</th>
<th>E40</th>
<th>E45</th>
<th>E50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck height</td>
<td>flat</td>
<td>flat</td>
<td>flat</td>
<td>flat</td>
<td>flat</td>
<td>flat</td>
<td>flat</td>
</tr>
<tr>
<td>Compact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OHG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **387**
- **388**

Trucks: 34

Masts: 4

Height Range: 3-7m

LSP500

LSP600

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Duplex</th>
<th>Triplex BR16X</th>
<th>Triplex BR18X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>840 Ah</td>
<td>840 Ah</td>
<td>840 Ah</td>
<td>840 Ah</td>
</tr>
<tr>
<td></td>
<td>LSP500</td>
<td>LSP600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Huge Truck Variety
Actual Series BR387/388

<table>
<thead>
<tr>
<th>Capacity</th>
<th>E20</th>
<th>E25</th>
<th>E30</th>
<th>E35</th>
<th>E40</th>
<th>E45</th>
<th>E50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck height</td>
<td>flat</td>
<td>high</td>
<td>flat</td>
<td>high</td>
<td>flat</td>
<td>high</td>
<td>flat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>387</th>
<th>Compact Standard OHG</th>
<th>440 Ah</th>
<th>560 Ah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compact Comfort OHG</td>
<td>440 Ah</td>
<td>560 Ah</td>
</tr>
<tr>
<td></td>
<td>Long Standard OHG</td>
<td>550 Ah</td>
<td>700 Ah</td>
</tr>
<tr>
<td></td>
<td>Long Comfort OHG</td>
<td>550 Ah</td>
<td>700 Ah</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>388</th>
<th>Compact Standard OHG</th>
<th>700 Ah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Long Container OHG</td>
<td>840 Ah</td>
</tr>
<tr>
<td></td>
<td>Long Comfort OHG</td>
<td>840 Ah</td>
</tr>
</tbody>
</table>

Reference Vehicles
- Trucks: 34
- Masts: 4
- Height Range: 3-7m

LSP500 LSP600
Outline

- Motivation for the Introduction of Model-Based Testing at Linde Material Handling
- Linde Safety Pilot Driver Assistance System
- Modeling Requirements for Testing the Linde Safety Pilot Driver Assistance System
- Model Validation
- Model-Based Testing Framework
Hardware In The Loop – HIL Validation Process

- Data Acquisition
- System Modeling
- Test Execution
- Setup HIL Environment
- Model Validation
- Discussion of Results
- Approved Model

Discussion of Results

Approved Model
Vehicle Dynamics Validation
Test Execution - Validation Driving Maneuvers

Quelle: Schyr, Fa IPG
Real Input

Pedal

Steering wheel

Real vs Simulated Results

- Speed
- a_x
- a_y
Lifting Dynamics Validation
Forklift z Coordinate

Mast Stage Transition

Measurement
Simulation

z in m

p oil in bar

F in dN

Time in s
Outline

- Motivation for the Introduction of Model-Based Testing at Linde Material Handling
- Linde Safety Pilot Driver Assistance System
- Modeling Requirements for Testing the Linde Safety Pilot Driver Assistance System
- Model Validation
- Model-Based Testing Framework
1. Requirement

„Drive speed shall be reduced smoothly when forklift condition is potentially dangerous e.g. lifted load while driving...“

2. Setup Model

Physically:
- Inertia of Vehicle
- Center of Gravity
- Mast type and data
- Mast attachment
- Geometries
- Powertrain
- Hydraulics
- Tires

Electrically:
- Additional sensors
- Additional control units
- Additional data and teaching effort for ECU operability

3. Test case generation

- Define maneuver
- Define various conditions in which to test:
 - Loads
 - Load center of gravity
 - Mast type + attachment
 - Vehicle variant
 - Environment (Road inclination, surface...)
- Program test script
- Decide on which physical quantities to focus for automated test case evaluation → Criteria!

4. Test case execution on Hil

- Execute test scripts + store results
- Check if specified boundaries have been violated
- Automated protocol with highlighted deviations including illustrations
- No user interaction required
- Remote usage of analyzing tools (e.g. Matlab)
Hardware In The Loop – HIL
State Diagram & Electrical Failure Testing

1. Requirement

2. Test case
 - Straightforward
 - Mouse click programming
 - Predefined macros
 - Configurable macros

3. Test case schedule

4. Test case execution on Hil with test manager software

- Collect test cases A, B, ...
- Specify expected behavior
- Review previously generated result files and re-specify behavior

- Load schedule + execute test cases A, B, ...
- Store results
- Compare to expected behavior given by test case schedule (automated/interactively)
- Highlight deviations
Linde Safety Pilot
Go to your limits. But never beyond!

Linde Material Handling