Real Time Driving Dynamics Simulation in Heavy Commercial Vehicles

Dr. Jan Fleischhacker
Dr. Philipp Wagner
Edin Topcagic
Patrick Rund

„apply & innovate 2012“ IPG Technology Conference
Karlsruhe, 18.09.2012
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Scope of work</td>
</tr>
<tr>
<td>3</td>
<td>MBS model (reference vehicle)</td>
</tr>
<tr>
<td>4</td>
<td>TruckMaker model with different suspension modeling</td>
</tr>
<tr>
<td>5</td>
<td>Results: First benchmark</td>
</tr>
<tr>
<td>6</td>
<td>Integration into MAN development framework</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion and outlook</td>
</tr>
</tbody>
</table>
Variety in Commercial Vehicle
Suspension

- Heavy, medium and light trucks, off-highway, special-purpose vehicle
- City-bus, intercity-bus, coach
- Up to 5 axles, variety in configuration and wheel base
- Up to 3 steered axles (mechanically, hydraulic, electrically)
- Suspension: Leaf spring, air spring, coil spring, hydropneumatic
- Powertrain: Configurations (up to 8x8), gearboxes, diff. gear units, tires, retarders
- Wide range between empty and laden vehicle
- Variety in platforms (tractor, body, flatbed, tipper, swap body, tanker, mixer, fire truck, urban)
Virtual development of varieties

- Reliable modeling of variants in simulation
- Real time capability
- Detailed consideration of components relevant for driving dynamics (here)
- IPG-TruckMaker benchmark
1 Motivation

2 Scope of work

3 MBS model (reference vehicle)

4 TruckMaker model with different suspension modeling

5 Results: First benchmark

6 Integration into MAN development framework

7 Conclusion and outlook
Scope of Work

- TruckMaker as a real-time simulation environment
- Integration of sophisticated subsystem models (compare the MODELON presentation)
- Management of variants

Integrative real-time capable vehicle
- Driver, road, environment
- Vehicle variants (truck / bus)
- Ridable basic vehicle
- Modules in different LOD*
<table>
<thead>
<tr>
<th></th>
<th>Real Time Driving Dynamics Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Scope of work</td>
</tr>
<tr>
<td>3</td>
<td>MBS model (reference vehicle)</td>
</tr>
<tr>
<td>4</td>
<td>TruckMaker model with different suspension modeling</td>
</tr>
<tr>
<td>5</td>
<td>Results: First benchmark</td>
</tr>
<tr>
<td>6</td>
<td>Integration into MAN development framework</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion and outlook</td>
</tr>
</tbody>
</table>
Vehicle data
- MAN TGX 4x2 BL Tractor
- Additional load on fifth wheel 10,5 t
- Front axle with leaf spring
- Rear axle with air spring and 4 point steering rod

Model properties
- Modeling in SIMPACK
- Elastic parts: frame, axle parts, 4 point steering rod
- Steering controller
- Drive controller
- Tire model TMEasy
SIMPACK MBS-Model
Reference suspension

Rear axle kinematics
- 4 air springs
- 2 dampers
- 2 lower steering rods
- 4 point steering rod

Front axle kinematics
- 2 leaf springs
- 2 dampers
- stabilizer bar
- steering system (not shown)
<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Scope of work</td>
</tr>
<tr>
<td>3</td>
<td>MBS model (reference vehicle)</td>
</tr>
<tr>
<td>4</td>
<td>TruckMaker model with different suspension modeling</td>
</tr>
<tr>
<td>5</td>
<td>Results: First benchmark</td>
</tr>
<tr>
<td>6</td>
<td>Integration into MAN development framework</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion and outlook</td>
</tr>
</tbody>
</table>
Model variants: Chassis / Suspension
- Linear kinematics
- IPG Kinematics analysis
- K&C analysis (SIMPACK)

Other model properties
- IPG Driver
- Pneumatic brake system
- Elastic cabin mount
- Elastic body
- Test runs with and without trailer
Required effects (e.g. for chassis controller development)

- Elasto-kinematics (e.g. bending of axle body)
- Axle buffer and “S-Schlag” buffer
- Compliance in steering rods
- 3D-nonlinear bushing characteristics
- 3D-nonlinear leaf spring behavior

Today, requirements can only be fulfilled with a MBS analysis
Kinematics and Compliance Analysis*

- Automated integration of axle model in K&C test rig
- Generation of test procedure in K&C Manager for SIMPACK (.if2)
- Simulation and result data export (.sbr) through scripted post processing
- Generation of SKC file according to TruckMaker specifications

- Interface to TruckMaker: Segment shaft angle (steering gear)
- Equals the steering rack travel
Real Time Driving Dynamics Simulation

Contents

1. Motivation
2. Scope of work
3. MBS model (reference vehicle)
4. TruckMaker model with different suspension modeling
5. Results: First benchmark
6. Integration into MAN development framework
7. Conclusion and outlook
Comparison of results

- Steady-state circular test with 47m radius, constant velocity 15 m/s
- IPG Driver and SIMPACK driver tests (similar behavior in steady state)
- Different “Level of Detail” in modeling
 - IPG Kinematics
 - K&C analysis with SIMPACK
Roll behavior of rigid axles in steady-state circular test (accelerated)

- Kinematic coupling of left and right wheel (bending and torsional stiffness)
- Kinematic constraints due to leaf spring and 4 point steering rod
- Stabilizing mechanism is considered by kinematic constraints in K&C
 - No additional force element required in TruckMaker
Behavior of rigid axles in ISO lane change test

- Comparison of different driver models (SIMPACK vs. IPG Driver)
- Equal trajectory
- Slight differences in steering behavior => differences in vehicle reaction
- Correlation for identical steering input (IPG Driver in SIMPACK)
Contents

1. Motivation
2. Scope of work
3. MBS model (reference vehicle)
4. TruckMaker model with different suspension modeling
5. Results: First benchmark
6. Integration into MAN development framework
7. Conclusion and outlook
Simulation of Variants

- SPM* - system for automated export functionalities
- K&C results can be exported from database
- Direct export of vehicle data (based on parts and modules) into TruckMaker model file

* Simulation Parameter Management
Today

- Manual export of parts and subsystems
- Direct export to TruckMaker ASCII-file
Today

Manual export of parts and subsystems

Direct export to TruckMaker ASCII-file

Example

Damper
Real Time Driving Dynamics Simulation

Contents

1. **Motivation**
2. **Scope of work**
3. **MBS model (reference vehicle)**
4. **TruckMaker model with different suspension modeling**
5. **Results: First benchmark**
6. **Integration into MAN development framework**
7. **Conclusion and outlook**
Conclusion and Outlook

Conclusion
- Good results in vehicle dynamics on the first try
- Suspension have to be considered with K&C-analysis to correlate MBS
- Constraints between right and left wheel (rigid axle) lead to new approaches
- TruckMaker vehicle models can be generated by database

Outlook
- Integration of MBS-Suspension (C-Code export)
- Establish a SPM model base
- Automated generation of enquiry vehicle model variants
Dipl.-Ing. Dr. techn. Jan Fleischhacker

MAN Truck & Bus AG
Engineering Research
Vehicle Dynamics and Simulation Methods
(Abt. ERVD)

Dachauer Straße 667
D-80995 München

Telefon: +49 89 1580 3649

Jan.Fleischhacker@man.eu
http://www.mantruckandbus.com