CarMaker ROS Interface

Proof of Concept

Date: May 23", 2019
Author: IPG

J iy
5 LA
AL TOMBODTIVE

Table of Content

1 Overview 3
1.1 SYSIEM REQUIFEMENTS ...uviviiiieeeie et e e e s et e e e e e e s s e e e e e e e et e e e e e e s e snnrnneees 3
1.2 1070] g (o1 =T o PP TP TP PTP R PPPTP 4
2 Quick Start 6
2.1 General INfOrMALIONviiii e 6
2.2 Installation and Preparation ... 6
221 RO S 6
22.2 CarMaker and CIMROSIF.........ooiiiiiiii e 7
2.3 Build necessary PartS........ccooooiiiiii 7
2.4 RUN the EXAMPIE ... 7
2.5 Check the Communication with ROS TOOISccoviiiiiiiiiiiec e 8
2.6 Parameter Manipulationcooiiiiiiiiiiii e 8
3 Examples 9
3.1 HEIOCM ..ttt e e e e e e e et e e e e e 9
3.1.1 Topic based SYNCrONIZAtIONoiiiiiiiiiiiiie e 9
4 Documentation 11
4.1 INSTAITATION ...t 11
4.2 FOIAEITFIIE OVEIVIEW.....ciiiiiiieiiiie ettt e e 12
4.3 CarMaker GUI EXIENSION........cciiuiiiiaiiiiieeiiiie ettt 14
4.4 Parameterization with INfOfIle ... 16
4.4.1 General Configurationcooviiiiiiiie 16
442 Launchfile and rgt........oooiieiiii e 17
443 CMNode Internal and ClOCK SEIVET.........cocuiiiiiiiiiiiiiii e 18
4.5 BUIIA PrOCESS ...ttt ettt e e 19
45.1 ROS WOIKSPACE ..o 19
452 Shared Library with CarMaker ROS NOGEc..oviiiiiiiieiiiiee e 19
453 CarMaker Executable with CarMaker ROS Interface..........cccccovvvvvciniiineniinnnen, 20
4.6 Interaction of CarMaker and Shared Library with CarMaker ROS Node 20
4.7 Job Mechanism (experimental) ... 21
4.8 Process Synchronization (experimental)ccccoiiiiiiiiiiiiiie e, 22
5 Release History 23

5.1 VEISION D.6.8... ettt e et e e e e e e et e e s e e e e e rat e e enaaaes 23

Overview

System Requirements

1 Overview

1.1

“ROS (Robot Operating System) is an open-source, meta-operating system for your robot. It
provides the services you would expect from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-passing
between processes, and package management.” (http://wiki.ros.org/ROS/Introduction)

The focus of ROS is on robotics but the field of application has become much wider. Especially for
scientists and developers of Advanced Driver Assistance Systems the software framework became
very interesting.

IPG Automotive is currently developing an interface and workflow to allow the usage of ROS in
combination with Car-/TruckMaker. The topics code building, message passing and synchronization
as well as test automation and parameterization are touched and will be explained in this
document.

The functionality provided by ROS and the CarMaker Toolchain are quite wide, so there is not only
one way to combine the two frameworks. This document describes an early proof-of-concept
solution where the workflow of ROS world and CarMaker world are considered both. For future
there might be additional variations with tendency to the preferred workflow.

This document is written for users that already have deeper knowledge in CarMaker programming
interface (see CarMaker Programmers Guide) and general ROS usage (see e.g. http://wiki.ros.org
or http://wiki.ros.org/ROS/Tutorials)

System Requirements

General system requirements are linked to the requirements of CarMaker (see CarMaker
ReleaseNotes) and ROS (see http://www.ros.org/). Table 1-1 shows the compatibility and existing
examples for different operating systems and ROS Versions.

Platform ROS 1 ROS 2

Currently not supported.
The basic CMRoslIF library is independent

Linux Example HelloCM with ROS from ROS version and can be reused.
workspace Adaption in build process, open source
code for shared library with CarMaker
Tested for: ROS Node and ROS Workspace are
Tested for Modificati be d b
« Ubuntu 16.04, 64bit o necessary. Modification can be done by
e kinetic kame user.

CM GUI extensions will not work (other
ROS programs need to be executed).

Windows

) Currently no investigation on this platforms
Xenomai

Table 1-1: Compatibility for different operating systems and ROS versions

J AL TOMBODTIVE

Rl

IPG Automotive GmbH 3 Date: May 23rd, 2019

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Tutorials
http://www.ros.org/

Overview)
Concept J ! UE D'ﬁ
1.2 Concept

ROS comes up with a variety of functionality where the communication via Topics on same or
distant systems in the same network and control of Nodes via Services and Parameters are some
of the most interesting components when thinking of modular systems exchanging data for complex
control tasks. The CarMaker ROS Interface (CMRosIF) tries to support these functionalities as
much as possible to allow a seamless software integration in different development states.
Therefore a ROS Node has been implemented directly into the CarMaker executable (Figure 1).

Currently no support for ROS2. Please check chapter System Requirements for more information.

libCM

(CarM

Dynamically|loaded at
CarMaker|runtime

¥

Figure 1: CarMaker ROS Interface and ROS Node Dependencies

When talking about the CarMaker ROS Interface the functionality of two main modules described
below are addressed.

In order to keep the CarMaker functionalities over a wide range of application variants, the
“CarMaker ROS Node” (CMNode) is not a typical ROS style standalone executable, but wrapped
into a shared library dependent on several ROS libraries (generally ROS basic libraries and
user defined libraries/packages e.g. with messages) and may have dependency to the CarMaker
libraries (e.g. libCarMaker.a for access to the Vehicle struct). The C++ code for this shared library is
editable by the user and can be dynamically loaded into a prepared CarMaker executable with a
CarMaker ROS Interface extension (might be provided as static or shared library).

The ROS independent CarMaker ROS Interface extension provides an API to the user accessible
C code modules and Infofile mechanism of CarMaker. The extension manages the ROS dependent
shared library above and allows a basic parameterization (e.g. Node name or remapping
arguments) of the CarMaker ROS Node via a CarMaker Infofile. It provides functions for common
CarMaker Hook Points (e.g. in User.c or User.cpp). While these are predefined functions and some
of them are optional it is also possible to create own functions in the CarMaker ROS Node library
and get these symbols with a general mechanism allowing to assign them to function pointers and
calling them at any point in the CarMaker cycle (after basic initialization has finished).

IPG Automotive GmbH 4 Date: May 23rd, 2019

Overview

Concept

Bl
r
- AUTOMOTIVE

The CarMaker ROS Node can act as a clock server by publishing the “/clock” topic with the current
simulation time to the other ROS Nodes (http://wiki.ros.org/Clock). Therefore the “/use_sim_time”
parameter needs to be set to “true” before other nodes are initialized (e.g. via launch file). Figure 2
shows the rqt Node Graph for a simple Node configuration where CMNode publishes the “/clock”
topic that is subscribed by all currently running nodes.

hellocm

/hellocm/ext2cm

/hellocm/cm2ext H @
Cramose 35

[clock
Figure 2: ROS rgt Node Graph for the HelloCM Example

CarMaker differs between the start of the CarMaker executable and a single simulation (running a
TestRun). This allows to load the shared library with CarMaker ROS Node at CarMaker startup or
before next simulation starts. Second version is interesting when “restarting” the CarMaker ROS
Node without a restart of the complete CarMaker executable (e.g. systems with complex
initialization phase). Currently the shared library is loaded at CarMaker startup while the
“dynamic start” of the CarMaker ROS Node is planned for future.

[J CarMaker (localhost) - Test: CMRosIF/AdaptiveCruiseControl

File Application Simulation Parameters Seftings Extras | Help i | |PG|
________ I
&
Car: CN‘:’::I::!:I un: Launch Select
with 4WD Dj -3Unch & Start Application

Trailer: - Restart ROS Core/Daemon Select
Stop ROS Core/Daemon

€ Start rqt 180250

Tires:

A | List Basic 18-p2.50
Load: List Mod
ist Nodes P—
List Topics
List Services
Maneuver
0 5 Drive 1 Edit Parameters
1 140 Drive with AdaptiveCruiseCar Perf: ¥/ i wouE x| iy Start
Status:
Buffer: 33.6 MB, 544 s
—
. [SED
Distance: 0.0

Figure 3: Overview — CarMaker GUI Extension

Finally the CarMaker ROS Interface comes up with a CarMaker GUI Extension providing some
basic functionalities with the ROS environment like editing the CMRosIF parameter file (CarMaker
Infofile) or wrapped default ROS programs started/handled via CarMaker GUI. More information
see “4.3 CarMaker GUI Extension”.

IPG Automotive GmbH 5 Date: May 23rd, 2019

http://wiki.ros.org/Clock

Quick Start I) n)
General Information AUTOMOTIVE

2 Quick Start

This chapter gives a short instruction to run an example including the CarMaker ROS
Interface, a ROS workspace with several packages and additional files for a specific
CarMaker version.

2.1 General Information

e Several scripts are not CM default and experimental for fast ramp up of this example!

e Current interface and build process is a prototype and will be improved in future
2.2 Installation and Preparation

221 ROS

e Follow the installation instructions on http://wiki.ros.org/ROS/Installation
e By default ROS installation is located in "/opt/ros/*
e Create symbolic link "/opt/ros/ros1" that points to e.g. "/opt/ros/kinetic"
e e.g. “cd/opt/ros; sudo In -sfn kinetic ros1”
e thisis only to simplify usage of different ROS versions
e otherwise you have to change paths with every ROS update (e.g. in scripts)
e Check ROS installation
e roscore
e Open anew terminal
e source /opt/ros/rosl/setup.bash
e roscore
e Talker
e Open a second terminal
e source /opt/ros/rosl/setup.bash
e rosrun roscpp_tutorials talker
e Listener
e Open a third terminal
e source /opt/ros/rosl/setup.bash

e rosrun roscpp_tutorials listener

IPG Automotive GmbH 6 Date: May 23rd, 2019

Quick Start I) n Y
Build necessary Parts AUTOMOTIVE

2.2.2

2.3

2.4

CarMaker and CMRosIF

e Install CarMaker according to "InstallationGuide.pdf"
e There is a special installation routine for CarMaker on Ubuntu! (CM Version < 8.0)

e The package with the CarMaker ROS Interface is prepared for a specific CarMaker version.
Please check chapter “4.1 Installation” for additional information!

Build necessary Parts

Build ROS Messages, shared library with CarMaker ROS Node and CarMaker executable:

e Open terminal and navigate to the CarMaker Project Directory

e Execute “./build_cmrosif.sh” to build ROS Messages, external ROS Node, shared library with
CarMaker ROS Node and CarMaker executable with the CMRosIF

¢ Normally CarMaker executable with CMRosIF needs to be built only once

e All steps can be done manually. The script is only a small workaround for quick ramp up!
e cdros/rosl_ws/; ./build.sh
e cd.././src; make and optional make install

Run the Example

e Once everything is built you can run the script “./CMStart.sh”
e CarMaker Main GUI with menu "Extras -> CMRosIF" should be visible

e The starting order for roscore and Nodes is important!

In this version the external node is started via launch file (roscore is started automatically)

Ensure the correct CarMaker executable has been selected via "CM Main GUI ->
Application -> Configuration/Status"

e "Folder"-Button : Choose "bin/CarMaker.linux64" or "src/CarMaker.linux64" that was
built previously

o Depends on your workflow! Special search order is used (see "CM Main GUI -> Help ->
User's Guide") e.g. you can also write "CarMaker.linux64" (first "bin/” in current project
is checked, then Installation folder)

Start external ROS Node and CarMaker Application via "CM Main GUI -> Extras ->
CMRosIF -> Launch & Start Application”

o If external node was just started via “Launch” you can start the CarMaker executable
via " CM Main GUI -> Application -> Start & Connect"

e The CM Main GUI should show that CarMaker is running in idle state
e Check log messages from executable via "CM Main GUI -> Simulation -> Session Log"
e The Linux terminal should show the log messages for this node

e Open a TestRun e.g. "Examples/Powertrain/PowertrainControl/AdaptiveCruiseControl" via "CM
Main GUI -> File -> Open..."

e Push the "Start"-Button in CM Main GUI and check the output in the Session Log and terminal

IPG Automotive GmbH 7 Date: May 23rd, 2019

Quick Start
Check the Communication with ROS Tools

2.5 Check the Communication with ROS Tools

rqgt can be started as mentioned below or directly
via "CM Main GUI -> Extras -> CMRosIF -> Start rqt"

Open new terminal

source <path to setup.bash in ROS user workspace>

e e.g. “<CMProjDir>/ros/ros1_ws/devel/setup.bash”

start “rqt” and use the provided Plugins

e Running Nodes via "Plugins -> Introspection -> Process Monitor"
¢ Nodes interaction via "Plugins -> Introspection -> Node Graph"

e Logging via "Plugins -> Logging -> Console"

2.6 Parameter Manipulation

e Parameters might be manipulated on several ways
e ROS

e rosparam in terminal

e rosparam list

e rosparam get /hellocm/cycletime

e rosparam set /hellocm/cycletime 50
e CarMaker (e.g. for test automation)

e Currenlty no direct support

e Tcl's “exec” command can be used with ScriptControl

IPG Automotive GmbH 8

|P G

AL TOMBODTIVE

Date: May 23rd, 2019

Examples 4 I) n
—
HelloCM - AUTOMOTIVE

3 Examples

3.1 HelloCM

hellocm

/hellocm/ext2cm

/hellocm/cm2ext H @
Cremose 3

[clock
Figure 4: ROS rgt Node Graph for the HelloCM Example

Simple example for demonstration of communication

The current example can be used without or with hard synchronization between the CarMaker
ROS Node an the external ROS Node

e The synchronization can be enabled/disabled in the CMRosIF Parameter file via “CM Main
GUI -> Extras -> CMRosIF -> Edit Parameters” and the Parameter “Node.Sync.Mode”

CarMaker can act as Clock Server and provides simulation time to other ROS Nodes

Related ROS packages with source code, launch files, etc. are located in
“<CMProjDir>/ros/ros1_ws/src”

3.1.1 Topic based Synchronization

The general synchronization method is described in chapter “4.8 Process Synchronization
(experimental)”.

The HelloCM example allows an activation of the synchronization with parameter
“Node.Sync.Mode” (see chapter “Parameterization with Infofile”) and provides the User Accessible
Quantity “CMRosIF.Sync.SynthDelay” to create an synthetic delay on side of external ROS Node.

o CarMaker - Direct Variable Access

Direct Variable Access Close
Quantity Value Unit G1 G2 Mode Duration [ms] MNew Value
#|CMRosIF Sync.SynthDelay 3s [Value| E] Set|
3 1 LN vae [[et
3 1 LA vae| [1 [set]
3 1 L vae [0 [et
3 | (A vae| [4 [setf
3 1 LA vae [0 [set]
3 L] vae [0 [set]
Set Group 1 | Set Group 2 | Release all

Figure 5: User Accessible Quantity to test synchronization

IPG Automotive GmbH 9 Date: May 23rd, 2019

Examples p I) B
HeIIOCM /J AUTOMOTIVE

By default the synchronization is off and results in a behaviour shown in Figure 6. The CarMaker
ROS Node acts as clock server and publishes simulation time to the ROS network. The external
node reacts on the current ROS time by publishing a message with its currently known simulation
time (2). This message is received by CarMaker ROS Node at simulation time (1) with a non-
constant delay. The third transmission at 30s was additionally delayed with a synthetic delay of 1s.

CarMaker - Session Log

Session Log

Errors: o E=

Warnings: 0

SIM_START CMRosIF/AdaptiveCruiseControl 2019-05-15 11:32:01
Time 0.279
CarMaker ROS Node is enabled! Mode=1, SyncMode=0
-> Node Mame = /CMNode
-> Publish /clock every 100ms
-> Send Service Request
-> Cycle time of external node changed from 150008ms to 18008ms
External ROS Node is ready to simulate
Time 0.000

SIMULATE CMRoslIF/AdaptiveCruiseControl

Time 10.006
/CMNode J(CMSimTime=10.005s)| External Node is in cycle 1,] Time=10.000s,| Stamp=1557¢

Time 20.006

/CMNode |(CMSimTime=20.013s)| External Node is in cycle 2,] Time=20.000s,] Stamp=1557¢
Time 31.502

/CMNode J(CMSimTime=31.501s)] External Node is in cycle 3,] Time=30.000s,] Stamp=1557¢
Time 33.836

SIM_END CMRoslF/AdaptiveCruiseControl 33.833s 838.429m

B

el P

Figure 6: Simulation without synchronization

The same simulation was started with “Node.Sync.Mode = 1” (Figure 7). Here all messages arrive
constantly 1ms after the external Node has been triggered.

0 CarMaker - Session Log

Session Log

Errors: o E=

Warnings: 0

SIM_START CMRoslIF/AdaptiveGruiseControl 2019-05-15 11:33:39
Time 40.164
CMRosIF: Read parameters from 'Data/Config/CMRosIFParameters’
CarMaker ROS Node is enabled! Mode=1, SyncMode=1
-> Node Mame = /CMNode
-> Publish /clock every 108ms
-> Send Service Request
-> Synchronize on Topic '/hellocm/ext2cm’ (cycletime=108008, cycleoff=8)
External ROS Node is ready to simulate
Time 0.000

SIMULATE CMReos|F/AdaptiveCruiseControl

Time 10.002 —
J/CMNode |(CMSimTime=10.001s)

/CMNode |(CMSimTime=20.001s)

/CMNode J(CMSimTime=30.001s)| External Node is in cycle 3,] Time=30.000s,
SIM_END CMReoslIF/AdaptiveCruiseControl 31.425s 769.551m

External Node is in cycle 1,| Time=10.000s,| Stamp=1557¢
Time 20.002 o]
External MNode is in cycle 2,| Time=20.0080s,| Stamp=1557¢

Time 30.002

Stamp=1557¢

1

el]

Figure 7: Simulation with topic based synchronization

IPG Automotive GmbH 10 Date: May 23rd, 2019

Documentation I) D)
Installation AUTOMOTIVE

4 Documentation

4.1 Installation

The CMRosIF needs an already existing CarMaker Project directory with included
sources/build environment (“src/” folder with CM_Main.c, ...) to build the CarMaker executable.
If the “src/” folder is missing please use “CM Main GUI -> File -> Project Folder -> Update
Project...” with enabled component “Sources/Build Environment”.

e Itis recommended to create a backup of your already existing CarMaker Project Directory

The update procedure is identical for CarMaker, TruckMaker, ...

Copy the files from zip file to the corresponding folders into your already existing CarMaker
Project Directory (e.g. by directly extracting inside the directory)

In general following files need to be updated:

e Configure your "~/.bashrc" for easier use, e.g. add

Additional paths for CM
addpath () { for d in "$Q@"; do PATH="S$PATH:$d"; done; }
addpath /opt/ipg/bin /opt/ipg/hil/linux/bin /opt/ipg/hil/linux/GUI

e ros/rosl_ws/src/hellocm_cmnode/CMakelLists.txt
e Update the CarMaker Version string and numerical value
e The path to CarMaker installation and include folder is updated implicitely
e e.g. update from old CarMaker version 7.1.2

set (CARMAKER VER 7.1.2)
set (CARMAKER NUMVER 70102)

e to new CarMaker version 7.1.3

set (CARMAKER VER 7.1.3)
set (CARMAKER_NUMVER 70103)

e For CarMaker version >= 8.0 addtionally set the variable CARMAKER_DIR to
set (CARMAKER DIR SENV{IPGHOME}/carmaker/linux64—${CARMAKER7VERH
o src/Makefile
¢ The Makefile rule to build the CarMaker executable needs to be extended that the shared

library for the CarMaker ROS Interface can be loaded properly. Please add following lines
e.g. after the LD_LIBS and OBJS_*.block of the original CarMaker Makefile.

CarMaker extension CMRosIF (provided by IPG)

DEF CFLAGS += -DWITH CMROSIF

LD LIBS OS += -1CMRosIF-$ (ARCH)

LDFLAGS += -L./../1ib/

LDFLAGS += -Wl,-rpath, '$$SORIGIN/../1lib/"
INC CFLAGS += -I../include

CFLAGS += -rdynamic

e src/User.c

e Copy the lines marked with “WITH_CMROSIF” from “User.c_CMRosIF” to your User.c”. If
not documented otherwise in the CarMaker RealeaseNotes the file can be used directly.

e CMStart.sh
e Update CarMaker GUI version to be started

e Information concerning build procedure and startup are decribed in chapter “2.3 Build
necessary Parts” ff.

IPG Automotive GmbH 11 Date: May 23rd, 2019

Documentation I) p)
—

AL TOMBODTIVE

Folder/File Overview

4.2 Folder/File Overview

The paths below are relative to the CarMaker Project Directory and describe the structure and
content after Installation of the files for CMRosIF. The structure can be adapted for different use
cases (references in files have to be updated).

— Iros
L rosl ws

CM CMRosIF Demo

¥

Figure 8: Folder/File overview for the example

Description of most relevant folders/files:

e build_cmrosif.sh

build.sh
build4eclipse.sh
.catkin workspace

3Irc

cmrosutils
— CMakeLists.txt

— build cmrosif.sh | include
— build help.bash cmrosutils
— CMStart.sh |: CMRosIF Utils.h
— ros_setup.bash CMRosUtils.h
— bin — package.xml
L— CarMaker.linuxé4 — srv
— Data L cMRemote.srv
Config — hellocm
I: CMRosIFParameters | — CMakeLists.txt
- — include
L— nellocm
— doc L— RoS1_HelloCM.n
L CMRosIF UsersGuide.pdf — launch
— GUI L hellocm.launch
L CMExt-CMRosIF.mod — package.xml
— include —— 3rc
L CMRosIF.h L ROS1_HelloCM.cpp
L 1ib — hellocm cmnode
L — 1ibCMRosIF-linux64.so — CMakeLists.txt
L =rc — include
CM Main.e L nellocm cmnode
CM Venicle.c — package.xml
_ L— arc
ig{,:c_h |: CMNode ROS1_HelloCM.cpp
) =im cmnode.c
Hakef:}.le ‘— hellocm rr.sg; F
Makefile CMRosIF L CHEEET_iSES.txt
User.c — include
User.c CMRosIF L helicem msgs
User.h | mag -

I: CHMZExt .msg
Ext2CM.msg
— package.xml
— src

— sarv
L— Init.srv

e Buids ROS workspace and CarMaker. Experimental for fast ramp up of the examples!

e CMStart.sh

e Start CarMaker GUI and loads GUI extension. “build_cmrosif.sh” has to be executed before

(for this example only once)

IPG Automotive GmbH 12

Date: May 23rd, 2019

AL TOMBODTIVE

Documentation I) B
Folder/File Overview —J

e Data/Config/CMRosIFParameters
e CarMaker Infofile with parameters for CarMaker ROS Interface and CarMaker ROS Node
e Enable/Disable Interface/Clock Server
e Arguments for CarMaker ROS Node for remapping arguments
e e.g."Cfg.Args = _ ns:=MyNamespace" to push down all Topics, ...
e Accessible via " CM Main GUI -> Extras -> CMRosIF -> Edit Parameters"
e More Information see “4.4 Parameterization with Infofile”
e GUI
e Folder for CarMaker GUI Extension of current CarMaker Project Directory
e The mod files can be copied to CarMaker installation folder to be available globally
¢ CMExt-CMRosIF.mod: see chapter “4.3 CarMaker GUI Extension”
e include/
e Folder with additional include files
e The header CMRosIF.h for CarMaker ROS Interface is located in this folder
e src/
e CarMaker source folder with files for user accessible modules of the CMRosIF extension
e Makefile
e Default CarMaker Makefile with additional flags/libraries for CMRosIF
e Building CarMaker executable with CMRosIF
e User.c
e Calling functions of CarMaker ROS Interface provided by “lib/.../CMRosIF.s0”
¢ see "include/CMRosIF.h" for more details
e ros/rosl_ws/

e Native ROS1 catkin workspace with user packages (messages, nodes, ...)

Including Topics and Services as well as the external ROS Node and shared library for
CarMaker ROS Node for the HelloCM example

The workspace might be also set as an symlink to an already existing ROS workspace

build.sh or build4eclipse.sh

e Build scripts for the ROS workspace. While “build.sh” runs just a simple build,
build4eclipse.sh prepares the ROS “/build” folder for a eclipse project that can be
imported to eclipse (inside eclipse: “File -> Import -> Existing Projects into Workspace”)

e src/hellocm

e Source code for external ROS node (independent from CarMaker)
e src/hellocm_cmnode

e Source code for shared library with CarMaker ROS Node

e Including wrapper functions for CMRosIF

src/hellocm_msgs
¢ Messages and Services used by the nodes above
e src/cmrosutils

General utilities when using ROS in combination with CarMaker (under development)

IPG Automotive GmbH 13 Date: May 23rd, 2019

Documentation 4 I) n
CarMaker GUI Extension il AUTOMOTIVE

4.3

CarMaker GUI Extension

The CarMaker ROS Interface comes up with an optional CarMaker GUI extension module. The
extension provides an extra menu “CM Main GUI -> Extras -> CMRosIF” in the CarMaker Main
GUI. The menu extension is included in the file “CMExt-CMRosIF.mod”. This file can be placed
inside “<CMinstDir>/GUI” to be globally available or inside CarMaker Project Directory and loaded
via an additional command line argument “-ext <Name of *.mod file”” when starting the CarMaker
GUI, e.g. if mod file is located in a folder “<CMProjDir>/GUI” the command is

“CM . —ext GUI/CMRosIF.mod” or CM-7.1.2 . —ext GUI/CMRosIF.mod

For the CMRosIF example with CarMaker Project Directory, the command line is located in the
script “CMStart.sh”. It is necessary that the CarMaker installation path has been added to the
systems search path (please check chapter “4.1 Installation” for additional information).

@ ™ carMaker (localhost) - Test: CMRosIF/AdaptiveCruiseControl

File Application Simulation Parameters Seftings Extras | Help ¥ | ||=>G|

I
Car: CMRosIF I ounch Select
Typical, unwvi

with 4WD Di Launch & Start Application

Trailer: - Restart ROS Core/Daemon Select

Stop ROS Core/Daemon

-/RT_2354

e ! Startrat

235

' List Basic
Load: 0 kg List Nodes Select
List Topics

List Services

Maneuver
o 5 Drive Edit Parameters
1 140 Drive with AdaptiveCruiseCar Perf: ¥/ i WouE: X iy Start
Status:
Buffer: 33.6 MB, 544 s
- Stop
o @O [
Distance: 0.0

Figure 9: CarMaker GUI Extension

Following commands are currently available:

Launch

This command starts a new terminal, sources the script “<CMProjDir>/ros_setup.bash” and
executes the ROS program “roslaunch”. An already opened Terminal (e.g. executing the ROS Core
and ROS Nodes) started with a previous “Launch” execution will be stopped if the feature
“TerminalCmd” is enabled. The arguments for “roslaunch” can be parameterized in the Infofile
“<CMProjDir>/Data/Config/CMRosI|FParameters”. (see chapter “4.4 Parameterization with Infofile”)

Launch & Start Application

This command works like the command “Launch” described above, but additionally the CarMaker
executable is started. An already running executable will be stopped. This allows a complete
start/restart of the simulation setup. Several parameters influence the startup (e.g. Cfg.Features).
Please check the chapter “Parameterization with Infofile” for more information. Please ensure that
the correct CarMaker executable is selected (“CM Main GUI -> Application -> Configuration/Status”)

IPG Automotive GmbH 14 Date: May 23rd, 2019

Documentation I) D)
CarMaker GUI Extension AUTOMOTIVE

<Restart/Stop> ROS Core/Daemon

“Restart” stops the currently running roscore and starts again. “Stop” just stops the process.
Normally not necessary when using the command “Run launch file” where the rocscore is
automatically started with the other ROS nodes.

Start rqt

This command starts a new terminal, sources the script “<CMProjDir>/ros_setup.bash” and
executes the ROS program “rqt”. The arguments for “rqt” can be parameterized in the Infofile
“<CMProjDir>/Data/Config/CMRosIFParameters”. (see chapter “4.4 Parameterization with Infofile”)

List <Basic/Nodes/Topics/Services>

The commands run the corresponding ROS programs rostopic, rosnode, rosservice and prints the
output to the CarMaker ScriptControl window.

Edit Parameters

This command opens the Infofile “<CMProjDir>/Data/Config/CMRosIFParameters” for editing. (see
chapter “4.4 Parameterization with Infofile”).

If nothing happens it is possible that the default editor is not set correctly. For Ubuntu and before
CM6.0.4 there is an additional mod file “CMExt-GUI_PatchUbuntu.mod” that fixes this issue starting
“gedit”. If another Editor should be used the Tcl variable “$Pgm(TextEditor.linux)” can be
manipulated e.g. via ScriptControl (current session only, e.g. “set ::Pgm(TextEditor.linux) gedit”), an
entry with the same command in the file “.CarMaker.tcl” located in the root directory of the
CarMaker Project Directory or your home directory.

IPG Automotive GmbH 15 Date: May 23rd, 2019

Documentation I) N\
Parameterization with Infofile TS S :{

4.4

4.4.1

Parameterization with Infofile

Following paramaters can be used to parameterize the ROS Independent CarMaker ROS Interface.
The parameters allow a modification of internal mechanism and e.g. arguments provided to
CarMaker ROS Node for the function “CMRosIF_CMNode_Init()".

The parameters are managed in different groups with own prefix

e Cfg.*: General configuration of CMRosIF

e Launch.”: Parameters related to the command “CM Main GUI->Extras->Run launch file”
e rqt.*: Parameters related to the command “CM Main GUI->Extras->Start rqt”

e Node.* : Parameters used inside CarMaker ROS Node. Depending on Node design!

General Configuration

Cfg.Lib.Path
This parameter is not optional!

Path to the shared library with CarMaker ROS Node. The path can be absolute or relative to current
CMProjDir. The shared library is currently loaded at startup of the CarMaker executable.

Example:

“Cfg.Lib.Path = ./ros/ros1_ws/install/lib/libCMNode_ROS1_HelloCM.so*

Cfg.Mode
This parameter is optional! Default = 1

The CarMaker ROS Interface can be disabled (Cfg.Mode=0). In this case the shared library with
CarMaker ROS Node is not loaded after starting the CarMaker executable and no CarMaker ROS
Node will be available. Standard functions provided by “CMRosIF.h” can still be called but will not
have any effect. User functions received with “CMRosIF_GetSymbol()” will be NULL pointers and
have to be managed by the user (e.g. “if (MyFunc != NULL) MyFunc();”)!

Cfg.Name
This parameter is optional! Default = “CMNode”

Name of the CarMaker ROS Node provided as argument by “CMRosIF_CMNode_Init()". The string
is normally provided to “ros::init()” inside CarMaker Ros Node. The naming will be affected by the
remapping arguments that can be provided with the “Cfg.Args” infofile parameter (e.g. to push the
whole node into own namespace).

IPG Automotive GmbH 16 Date: May 23rd, 2019

Documentation I) N\
Parameterization with Infofile TS S :{

Cfg.Args

wn

This parameter is optional! Default =

The parameter string is mapped to the Argc and Argv arguments provided by the function
“CMRosIF_CMNode_Init()” and can be provided to the ROS function “ros::init()”. This allows the
user providing arguments in a style of a standalone ROS node executable where the arguments
Argc and Argv are provided by the “main()” function (e.g. for remapping arguments, ...).

Remapping arguments can’t be provided directly as arguments to the CarMaker executable!
Example:

If “Cfg.Args = __ns:=MyVhcl” “CMRosIF_CMNode_Init()” will provide Argc=2 and e.g.

Argv[1]="“__ns:=MyVhcl”. When provided to “ros::init()” Node name, Topics, etc. will be pushed
down to the ROS namespace “/MyVhcl” (e.g. Node name “/CMNode” will be “/MyVhcl/CMNode”.

Cfg.Features
This parameter is optional! Default = “TerminalCmd”

The parameter allows a space separated list with different special features available for the
CMRosIF.

e AutoStart (experimental)
e Enables an automated mechanism when CarMaker TestRun is started
e Stopping ros launch and CM executable
e Start of ros launch file and CM executable
e calls "Cfg.LaunchProc" in context "startsim”
e TerminalCmd (experimental, Ubuntu only)
e Mechanism to handle multiple Terminals
e Automatic termination of launch terminal
e Optional multi terminal/tab mechanism

e Managing different tabs and terminals and run multiple launch files in same (one tab for
each) or multiple terminals

e Create additional terminals with Linux commands
e Check "Cfg.UserUtils.FPath" and "Cfg.LaunchProc"
e Additional parameterization via keys
e <pre>="Cfg.TerminalCmd"
e '<pre>.startwait" = Time to wait in ms after start command was executed

e "<pre>.stopwait" = Time to wait in ms after terminal stop request
4.4.2 Launchfile and rqt

Launch.Args

Arguments provided to the ROS program “roslaunch” when the GUI command
“CM Main GUI->Extras->CMRosIF->Run launch file” is used.

IPG Automotive GmbH 17 Date: May 23rd, 2019

Documentation I) n
Parameterization with Infofile OIS WD e

4.4.3

Example:

"y

“Launch.Args = hellocm hellocm.launch use_sim_time:="true"” will run the launch file
“hellocm.launch” from ROS package “hellocm” providing the argument “use_sim_time:="true"".

rqt.Args

Arguments provided to the ROS program “roslaunch” when the GUI command “CM Main GUI-
>Extras->CMRosIF->Start rqt” is used.

CMNode Internal and Clock Server

Node.Mode
Usage depends on node design! See source files of CarMaker ROS Node for more information.

The intention of this parameter is to set an node internal mode.
e.g. 0=0ff, 1=Enabled, 2=ThreadedSpin,

Node.Sync.Mode
Usage depends on node design! See source files of CarMaker ROS Node for more information.

The synchronization mechanism is currently under investigation. Currently external ROS nodes can
be synchronized only via the “/clock” Topic published by the CarMaker ROS Node. But CarMaker
does not wait for the answer, so incoming Topics may arrive delayed and not in an deterministic
way.

The intention of this parameter is to set an node internal synchronization mode.
e.g. 0=NoSync, 1=SyncViaTopics,

Node.Sync.TimeMax
Usage depends on node design! See source files of CarMaker ROS Node for more information.

Defines the timeout in seconds if synchronization is enabled. By default CarMaker will throw an
error and stops the current TestRun if the expected Topic is not received within this timeout.

Node.UseSimTime
Usage depends on node design! See source files of CarMaker ROS Node for more information.

If this parameter is set to “1” CarMaker will act as ROS Clock Server by setting the ROS parameter
“/luse_sim_time” and publishing the current simulation time every “Node.nCyclesClock” cycles.

Node.nCyclesClock
Usage depends on node design! See source files of CarMaker ROS Node for more information.

Number of CarMaker cycles. Generally duration for 1 cycle is 1ms.

IPG Automotive GmbH 18 Date: May 23rd, 2019

Documentation I) D)
Build Process AUTOMOTIVE

4.5

4.5.1

45.2

Build Process

Chapter “2.3 Build necessary Parts” shows how to build the example with a special script file. All
the steps can be executed by hand as described below.

ROS Workspace

The ROS workspace (e.g. <CMProjDir>/ros/ros1_ws”, native ROS workspace) contains the script
“pbuild.sh”, that makes some preparation (e.g. sourcing “setup.bash” from ROS installation) and
executes the default ROS command “catkin_make install” (default behaviour). All packages located
in “src” folder below the workspace will be built. A package can be ignored by adding the file
“CATKIN_IGNORE?” to the root level of a package (e.g “src/hellocm/CATKIN_IGNORE”).

The location of the ROS workspace inside a CarMaker Project Directory is optional. The ROS
workspace can be also in a different place and linked via symbolic link. Without a link inside
“<CMProjDir>/ros/” some features shown with the provided example might not work.

For detailed information check http://wiki.ros.org/catkin/workspaces.

For the provided example all code with ROS dependency is located in this workspace (e.g. external
ROS Node and shared library for CarMaker ROS Node, ...).

Shared Library with CarMaker ROS Node

The shared library with CarMaker ROS Node is built within the ROS workspace in an own ROS
package (e.g. <CMProjDir>/ros/ros1_ws/hellocm_cmnode).

The path to the shared library with CarMaker ROS Node dynamically loaded inside CarMaker
executable can be adapted by editing the parameter “Cfg.Lib.Path” (see 4.4.1 General
Configuration)

e The source code of the shared library contains C functions that are not allowed to be renamed
(otherwise the Interface won't find correct symbols)

e Additional user defined functions can be created inside the library and used e.g. inside User.c
via function pointers (see example code for CMNode, User.C and “CMRosIF.h”)

e Code to CarMaker Data (e.g. Sensors and Vehicle Model) can be directly accessed inside the
code for the shared library with CarMaker ROS Node. Just add the necessary header from
“<CMInstDir>/include”. Please note that the shared library will have dependency to the
CarMaker libraries and CarMaker Version at compile time! For a new CarMaker Version
(especially new major release) the library needs to be recompiled.

The CarMaker Version (path and version number) can be adapted in the “CMakeLists.txt".

Please check “CMakeLists.txt” and “package.xml” inside the CMNode package for more
information.

IPG Automotive GmbH 19 Date: May 23rd, 2019

http://wiki.ros.org/catkin/workspaces

Documentation I) N\
Interaction of CarMaker and Shared Library with CarMaker TS S :{

ROS Node

45.3 CarMaker Executable with CarMaker ROS Interface

The CarMaker executable with CarMaker ROS Interface is built with the CarMaker Makefile, e.g.
located in “<CMProjDir>/src” and can be built by opening a new terminal and executing “make”
inside this folder (more information see “Programmers Guide”). The CarMaker executable for this
example normally only needs to be compiled after modifications in CarMaker user modules (User.c,
...) or when the CMRosIF API has changed.

The CarMaker ROS Interface currently consists of a header e.g. “<CMProjDir>/include/CMRosIF.h”
and a shared library e.g. “<CMProjDir>/lib/<platform>/<CMVersion>/libCMRosIF.so”. The shared
library is linked with the CarMaker executable and is automatically loaded at startup.

4.6 Interaction of CarMaker and Shared Library with CarMaker
ROS Node

The shared library with CarMaker ROS Node is not directly linked to CarMaker executable. When
calling the initialization function for the CarMaker ROS Interface e.g. inside “User.c” the shared
library with CarMaker ROS Node parameterized by “Cfg.Lib.Path” (see 4.4 Parameterization with
Infofile) will be loaded during runtime of the CarMaker executable. Commonly used default
functions are already existing (see “CMRosIF.h"). These functions call internal function pointers.
These function pointers get the related functions from the shared library with CarMaker ROS Node.

For example, the function “CMRosIF_TestRun_Start_atBegin()” from the CMRosIF will call
“CMRosIF_CMNode_TestRun_Start_atBegin()” from the shared library with CarMaker ROS
Node.

The “CMRosIF_Init()” has to be called before any other function from the CMRosIF API.

Additional user functions can be defined inside the shared library with CarMaker ROS Node
within the “extern “C’” block. The function “CMRosIF_GetSymbol()” allows to search for
functions/Symbols inside the dynamically loaded library with CarMaker ROS Node and returns a
function pointer that can be used e.g. in User.c. Check “User.c” and source code for shared library
for an example.

Variables from the CarMaker environment can be directly accessed by including the relevant
CarMaker headers (e.g. “Vehicle.h” for vehicle velocity, ...) located in the CarMaker installation
directory (e.g. “/opt/ipg/hil/linux/include”) to the shared library with CarMaker ROS Node. Libraries
for linking are located in the “lib/” folder of the CarMaker installation directory.

IPG Automotive GmbH 20 Date: May 23rd, 2019

Documentation I) N\
Job Mechanism (experimental) TS S :{

4.7

Job Mechanism (experimental)

The job mechanism can be used to execute one or more cyclic task (e.g. publish topic, copy data
from message buffer to vehicle model, ...) dependent on e.g. the CarMaker cycle number relative to
simulation start. This allows us to pusblish data e.g. every 10ms with an offset of e.g. 5ms.

Currently two different modes are available

e “Default Mode”
e “Extended Mode”

While the “Default Mode” can be used to realize cyclic tasks as mentioned above, the extended
mode expects a preparatory task to be finished before the actual task can start.

The basic workflow for the job mechanism is

1. Create a job handle via CMCRJob_Create()
Initialize job via CMCRJob_Init()
Optional (Only for “Extended Mode”)

a. Check every simulation cycle if a preparation for this job needs to be done in current cycle
via CMCRJob_DoPrep()

Optional: Manual confirmation that all preparation tasks related to this job have been
finished via CMCRJob_DoPrep_SetDone()

b.
4. Check every simulation cycle if a job needs to be done in current cycle via CMCRJob_DoJob()

a. Optional: Manual confirmation that all tasks related to this job have been finished via
CMCRJob_DoJob_SetDone()

5. Reinitialize for next simulaton loop via CMCRJob_Init() or delete via CMCRJob_Delete()

The job mechanism is independent from ROS and only available inside the CarMaker ROS
Node. Please check the header “/ros/ros1_ws/src/cmrosutils/include/cmrosutils/CMRosIF_Utils.h”
for more information concering available functions and the ROS package “hellocm_cmnode” for
general usage!

IPG Automotive GmbH 21 Date: May 23rd, 2019

Documentation I) N\
Process Synchronization (experimental) TS S :{

4.8 Process Synchronization (experimental)

By default ROS is a non-deterministic software framework that transfers messages between
several Nodes using the publish/subscribe mechanism. The effective time until a message is
received depends on the system workload and transmission path. So multiple processes run
independent that may results in non-reproducible simulations. If running the simulaiton in soft real
time the effect might be small and is acceptable for many use cases. But running CarMaker with
maximum simulation speed the relative time until a message is transferred is relevant for the
simulation result.

Therefore a simple example of a topic based synchronization between an external ROS Node and
the CarMaker ROS Node is available that forces CarMaker to wait until a free parameterizable
message is received. The synchronization is based on an internal cycle counter and the knowledge
of expected cycle time of the external Node inside the CarMaker Node.

The mechanism can be used in different ways

1. Simulation time based synchronization
e The ROS “/use_sim_time” mechanism needs to be activated
e CarMaker ROS Node has to act as clock server
e ROS Timer inside extrernal ROS Node that reacts on changes in simulation time
e Provide cycle time and topic name for synchronization to CarMaker ROS Node
2. Data triggered synchronization

¢ ROS Node interaction with one or more calculation chains, each chain finishes with topic in
CarMaker ROS Node that is used for synchronization

e One ore more subscription(s) in external ROS Node(s)
e Includes algorithm, etc.
e ROS publish at end of calculation chain
e Provide cycyle time and topic name for synchronization to CarMaker ROS Node

e CarMaker ROS Node waits in specific cycle until all messages have arrived

The simulation time based synchronization is implemented in the example described in chapter
“HelloCM". The effect of synchronization is shown in chapter “Topic based Synchronization”.

IPG Automotive GmbH 22 Date: May 23rd, 2019

Release History I) nY
Version 0.6.8 AUTOMOTIVE

5 Release History

51 Version 0.6.8

General

Updatet User.c and Makefile for CarMaker executable in “<CMProjDir>/src/”

Default target for ROS build and examples is “devel” (before “install”)

Added script “<CMProjDir>/ros/ros1_ws/src/build4eclipse.sh”

e Builds a catkin workspace with eclipse project files inside the “build” folder and allows a
direct import as eclipse project

e According to “Catkin-y approach” described on http://wiki.ros.org/IDEs#Eclipse
e The script can be called manually on demand

Now the demo package is independent from CarMaker version and can be easily integrated
into an already existing CarMaker Project Directory

Examples: HelloCM

e New example for topic based synchronization
¢ New job mechanism fir cyclic data publishing on CMNode Side

¢ Renamed ROS messages and restructured global variables for CMNode and external ROS
Node

GUI

e New menu entry “Launch & Start Application”
¢ New experimental feature “TerminalCmd”

¢ Manages terminal started via CarMaker GUI e.g. menu entry “CM Main GUI -> Extras ->
CMRosIF-> Launch”

¢ More information see chapter “Parameterization with Infofile” and parameter
“Cfg.Features”

IPG Automotive GmbH 23 Date: May 23rd, 2019

http://wiki.ros.org/IDEs#Eclipse

	1 Overview
	1.1 System Requirements
	1.2 Concept

	2 Quick Start
	2.1 General Information
	2.2 Installation and Preparation
	2.2.1 ROS
	2.2.2 CarMaker and CMRosIF

	2.3 Build necessary Parts
	2.4 Run the Example
	2.5 Check the Communication with ROS Tools
	2.6 Parameter Manipulation

	3 Examples
	3.1 HelloCM
	3.1.1 Topic based Synchronization

	4 Documentation
	4.1 Installation
	4.2 Folder/File Overview
	4.3 CarMaker GUI Extension
	4.4 Parameterization with Infofile
	4.4.1 General Configuration
	4.4.2 Launchfile and rqt
	4.4.3 CMNode Internal and Clock Server

	4.5 Build Process
	4.5.1 ROS Workspace
	4.5.2 Shared Library with CarMaker ROS Node
	4.5.3 CarMaker Executable with CarMaker ROS Interface

	4.6 Interaction of CarMaker and Shared Library with CarMaker ROS Node
	4.7 Job Mechanism (experimental)
	4.8 Process Synchronization (experimental)

	5 Release History
	5.1 Version 0.6.8

