

CarMaker ROS Interface
Proof of Concept

Date: May 23rd, 2019

Author: IPG

Table of Content

1 Overview 3

1.1 System Requirements .. 3

1.2 Concept .. 4

2 Quick Start 6

2.1 General Information .. 6

2.2 Installation and Preparation .. 6

2.2.1 ROS .. 6

2.2.2 CarMaker and CMRosIF ... 7

2.3 Build necessary Parts ... 7

2.4 Run the Example .. 7

2.5 Check the Communication with ROS Tools ... 8

2.6 Parameter Manipulation ... 8

3 Examples 9

3.1 HelloCM .. 9

3.1.1 Topic based Synchronization ... 9

4 Documentation 11

4.1 Installation ...11

4.2 Folder/File Overview ...12

4.3 CarMaker GUI Extension ..14

4.4 Parameterization with Infofile ...16

4.4.1 General Configuration ..16

4.4.2 Launchfile and rqt ...17

4.4.3 CMNode Internal and Clock Server ..18

4.5 Build Process ..19

4.5.1 ROS Workspace ...19

4.5.2 Shared Library with CarMaker ROS Node ...19

4.5.3 CarMaker Executable with CarMaker ROS Interface ...20

4.6 Interaction of CarMaker and Shared Library with CarMaker ROS Node20

4.7 Job Mechanism (experimental) ..21

4.8 Process Synchronization (experimental) ..22

5 Release History 23

5.1 Version 0.6.8...23

IPG Automotive GmbH 3 Date: May 23rd, 2019

Overview

System Requirements

1 Overview

“ROS (Robot Operating System) is an open-source, meta-operating system for your robot. It

provides the services you would expect from an operating system, including hardware abstraction,

low-level device control, implementation of commonly-used functionality, message-passing

between processes, and package management.” (http://wiki.ros.org/ROS/Introduction)

The focus of ROS is on robotics but the field of application has become much wider. Especially for

scientists and developers of Advanced Driver Assistance Systems the software framework became

very interesting.

IPG Automotive is currently developing an interface and workflow to allow the usage of ROS in

combination with Car-/TruckMaker. The topics code building, message passing and synchronization

as well as test automation and parameterization are touched and will be explained in this

document.

The functionality provided by ROS and the CarMaker Toolchain are quite wide, so there is not only

one way to combine the two frameworks. This document describes an early proof-of-concept

solution where the workflow of ROS world and CarMaker world are considered both. For future

there might be additional variations with tendency to the preferred workflow.

This document is written for users that already have deeper knowledge in CarMaker programming

interface (see CarMaker Programmers Guide) and general ROS usage (see e.g. http://wiki.ros.org

or http://wiki.ros.org/ROS/Tutorials)

1.1 System Requirements

General system requirements are linked to the requirements of CarMaker (see CarMaker

ReleaseNotes) and ROS (see http://www.ros.org/). Table 1-1 shows the compatibility and existing

examples for different operating systems and ROS Versions.

Platform ROS 1 ROS 2

Linux

Tested for:

 Ubuntu 16.04, 64bit

Example HelloCM with ROS
workspace

Tested for

 kinetic kame

Currently not supported.

The basic CMRosIF library is independent
from ROS version and can be reused.

Adaption in build process, open source
code for shared library with CarMaker
ROS Node and ROS Workspace are
necessary. Modification can be done by
user.

CM GUI extensions will not work (other
ROS programs need to be executed).

Windows
Currently no investigation on this platforms

Xenomai

Table 1-1: Compatibility for different operating systems and ROS versions

http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Tutorials
http://www.ros.org/

IPG Automotive GmbH 4 Date: May 23rd, 2019

Overview

Concept

1.2 Concept

ROS comes up with a variety of functionality where the communication via Topics on same or

distant systems in the same network and control of Nodes via Services and Parameters are some

of the most interesting components when thinking of modular systems exchanging data for complex

control tasks. The CarMaker ROS Interface (CMRosIF) tries to support these functionalities as

much as possible to allow a seamless software integration in different development states.

Therefore a ROS Node has been implemented directly into the CarMaker executable (Figure 1).

Currently no support for ROS2. Please check chapter System Requirements for more information.

Figure 1: CarMaker ROS Interface and ROS Node Dependencies

When talking about the CarMaker ROS Interface the functionality of two main modules described

below are addressed.

In order to keep the CarMaker functionalities over a wide range of application variants, the

“CarMaker ROS Node” (CMNode) is not a typical ROS style standalone executable, but wrapped

into a shared library dependent on several ROS libraries (generally ROS basic libraries and

user defined libraries/packages e.g. with messages) and may have dependency to the CarMaker

libraries (e.g. libCarMaker.a for access to the Vehicle struct). The C++ code for this shared library is

editable by the user and can be dynamically loaded into a prepared CarMaker executable with a

CarMaker ROS Interface extension (might be provided as static or shared library).

The ROS independent CarMaker ROS Interface extension provides an API to the user accessible

C code modules and Infofile mechanism of CarMaker. The extension manages the ROS dependent

shared library above and allows a basic parameterization (e.g. Node name or remapping

arguments) of the CarMaker ROS Node via a CarMaker Infofile. It provides functions for common

CarMaker Hook Points (e.g. in User.c or User.cpp). While these are predefined functions and some

of them are optional it is also possible to create own functions in the CarMaker ROS Node library

and get these symbols with a general mechanism allowing to assign them to function pointers and

calling them at any point in the CarMaker cycle (after basic initialization has finished).

IPG Automotive GmbH 5 Date: May 23rd, 2019

Overview

Concept

The CarMaker ROS Node can act as a clock server by publishing the “/clock” topic with the current

simulation time to the other ROS Nodes (http://wiki.ros.org/Clock). Therefore the “/use_sim_time”

parameter needs to be set to “true” before other nodes are initialized (e.g. via launch file). Figure 2

shows the rqt Node Graph for a simple Node configuration where CMNode publishes the “/clock”

topic that is subscribed by all currently running nodes.

Figure 2: ROS rqt Node Graph for the HelloCM Example

CarMaker differs between the start of the CarMaker executable and a single simulation (running a

TestRun). This allows to load the shared library with CarMaker ROS Node at CarMaker startup or

before next simulation starts. Second version is interesting when “restarting” the CarMaker ROS

Node without a restart of the complete CarMaker executable (e.g. systems with complex

initialization phase). Currently the shared library is loaded at CarMaker startup while the

“dynamic start” of the CarMaker ROS Node is planned for future.

Figure 3: Overview – CarMaker GUI Extension

Finally the CarMaker ROS Interface comes up with a CarMaker GUI Extension providing some

basic functionalities with the ROS environment like editing the CMRosIF parameter file (CarMaker

Infofile) or wrapped default ROS programs started/handled via CarMaker GUI. More information

see “4.3 CarMaker GUI Extension”.

http://wiki.ros.org/Clock

IPG Automotive GmbH 6 Date: May 23rd, 2019

Quick Start

General Information

2 Quick Start

This chapter gives a short instruction to run an example including the CarMaker ROS

Interface, a ROS workspace with several packages and additional files for a specific

CarMaker version.

2.1 General Information

 Several scripts are not CM default and experimental for fast ramp up of this example!

 Current interface and build process is a prototype and will be improved in future

2.2 Installation and Preparation

2.2.1 ROS

 Follow the installation instructions on http://wiki.ros.org/ROS/Installation

 By default ROS installation is located in "/opt/ros/"

 Create symbolic link "/opt/ros/ros1" that points to e.g. "/opt/ros/kinetic"

 e.g. “cd /opt/ros; sudo ln -sfn kinetic ros1”

 this is only to simplify usage of different ROS versions

 otherwise you have to change paths with every ROS update (e.g. in scripts)

 Check ROS installation

 roscore

 Open a new terminal

 source /opt/ros/ros1/setup.bash

 roscore

 Talker

 Open a second terminal

 source /opt/ros/ros1/setup.bash

 rosrun roscpp_tutorials talker

 Listener

 Open a third terminal

 source /opt/ros/ros1/setup.bash

 rosrun roscpp_tutorials listener

IPG Automotive GmbH 7 Date: May 23rd, 2019

Quick Start

Build necessary Parts

2.2.2 CarMaker and CMRosIF

 Install CarMaker according to "InstallationGuide.pdf"

 There is a special installation routine for CarMaker on Ubuntu! (CM Version < 8.0)

 The package with the CarMaker ROS Interface is prepared for a specific CarMaker version.

Please check chapter “4.1 Installation” for additional information!

2.3 Build necessary Parts

Build ROS Messages, shared library with CarMaker ROS Node and CarMaker executable:

 Open terminal and navigate to the CarMaker Project Directory

 Execute “./build_cmrosif.sh” to build ROS Messages, external ROS Node, shared library with

CarMaker ROS Node and CarMaker executable with the CMRosIF

 Normally CarMaker executable with CMRosIF needs to be built only once

 All steps can be done manually. The script is only a small workaround for quick ramp up!

 cd ros/ros1_ws/; ./build.sh

 cd ../../src; make and optional make install

2.4 Run the Example

 Once everything is built you can run the script “./CMStart.sh”

 CarMaker Main GUI with menu "Extras -> CMRosIF" should be visible

 The starting order for roscore and Nodes is important!

 In this version the external node is started via launch file (roscore is started automatically)

 Ensure the correct CarMaker executable has been selected via "CM Main GUI ->

Application -> Configuration/Status"

 "Folder"-Button : Choose "bin/CarMaker.linux64" or "src/CarMaker.linux64" that was

built previously

 Depends on your workflow! Special search order is used (see "CM Main GUI -> Help ->

User's Guide") e.g. you can also write "CarMaker.linux64" (first "bin/” in current project

is checked, then Installation folder)

 Start external ROS Node and CarMaker Application via "CM Main GUI -> Extras ->

CMRosIF -> Launch & Start Application"

 If external node was just started via “Launch” you can start the CarMaker executable

via " CM Main GUI -> Application -> Start & Connect"

 The CM Main GUI should show that CarMaker is running in idle state

 Check log messages from executable via "CM Main GUI -> Simulation -> Session Log"

 The Linux terminal should show the log messages for this node

 Open a TestRun e.g. "Examples/Powertrain/PowertrainControl/AdaptiveCruiseControl" via "CM

Main GUI -> File -> Open..."

 Push the "Start"-Button in CM Main GUI and check the output in the Session Log and terminal

IPG Automotive GmbH 8 Date: May 23rd, 2019

Quick Start

Check the Communication with ROS Tools

2.5 Check the Communication with ROS Tools

 rqt can be started as mentioned below or directly

via "CM Main GUI -> Extras -> CMRosIF -> Start rqt"

 Open new terminal

 source <path to setup.bash in ROS user workspace>

 e.g. “<CMProjDir>/ros/ros1_ws/devel/setup.bash”

 start “rqt” and use the provided Plugins

 Running Nodes via "Plugins -> Introspection -> Process Monitor"

 Nodes interaction via "Plugins -> Introspection -> Node Graph"

 Logging via "Plugins -> Logging -> Console"

 ...

2.6 Parameter Manipulation

 Parameters might be manipulated on several ways

 ROS

 rosparam in terminal

 rosparam list

 rosparam get /hellocm/cycletime

 rosparam set /hellocm/cycletime 50

 CarMaker (e.g. for test automation)

 Currenlty no direct support

 Tcl’s “exec” command can be used with ScriptControl

IPG Automotive GmbH 9 Date: May 23rd, 2019

Examples

HelloCM

3 Examples

3.1 HelloCM

Figure 4: ROS rqt Node Graph for the HelloCM Example

 Simple example for demonstration of communication

 The current example can be used without or with hard synchronization between the CarMaker

ROS Node an the external ROS Node

 The synchronization can be enabled/disabled in the CMRosIF Parameter file via “CM Main

GUI -> Extras -> CMRosIF -> Edit Parameters” and the Parameter “Node.Sync.Mode”

 CarMaker can act as Clock Server and provides simulation time to other ROS Nodes

 Related ROS packages with source code, launch files, etc. are located in

“<CMProjDir>/ros/ros1_ws/src”

3.1.1 Topic based Synchronization

The general synchronization method is described in chapter “4.8 Process Synchronization

(experimental)”.

The HelloCM example allows an activation of the synchronization with parameter

“Node.Sync.Mode” (see chapter “Parameterization with Infofile”) and provides the User Accessible

Quantity “CMRosIF.Sync.SynthDelay” to create an synthetic delay on side of external ROS Node.

Figure 5: User Accessible Quantity to test synchronization

IPG Automotive GmbH 10 Date: May 23rd, 2019

Examples

HelloCM

By default the synchronization is off and results in a behaviour shown in Figure 6. The CarMaker

ROS Node acts as clock server and publishes simulation time to the ROS network. The external

node reacts on the current ROS time by publishing a message with its currently known simulation

time (2). This message is received by CarMaker ROS Node at simulation time (1) with a non-

constant delay. The third transmission at 30s was additionally delayed with a synthetic delay of 1s.

1 2

Figure 6: Simulation without synchronization

The same simulation was started with “Node.Sync.Mode = 1” (Figure 7). Here all messages arrive

constantly 1ms after the external Node has been triggered.

1 2

Figure 7: Simulation with topic based synchronization

IPG Automotive GmbH 11 Date: May 23rd, 2019

Documentation

Installation

4 Documentation

4.1 Installation

 The CMRosIF needs an already existing CarMaker Project directory with included

sources/build environment (“src/” folder with CM_Main.c, …) to build the CarMaker executable.

If the “src/” folder is missing please use “CM Main GUI -> File -> Project Folder -> Update

Project…” with enabled component “Sources/Build Environment”.

 It is recommended to create a backup of your already existing CarMaker Project Directory

 The update procedure is identical for CarMaker, TruckMaker, …

 Copy the files from zip file to the corresponding folders into your already existing CarMaker

Project Directory (e.g. by directly extracting inside the directory)

In general following files need to be updated:

 Configure your "~/.bashrc" for easier use, e.g. add

Additional paths for CM

addpath () { for d in "$@"; do PATH="$PATH:$d"; done; }

addpath /opt/ipg/bin /opt/ipg/hil/linux/bin /opt/ipg/hil/linux/GUI

 ros/ros1_ws/src/hellocm_cmnode/CMakeLists.txt

 Update the CarMaker Version string and numerical value

 The path to CarMaker installation and include folder is updated implicitely

 e.g. update from old CarMaker version 7.1.2

set(CARMAKER_VER 7.1.2)

set(CARMAKER_NUMVER 70102)

 to new CarMaker version 7.1.3

set(CARMAKER_VER 7.1.3)

set(CARMAKER_NUMVER 70103)

 For CarMaker version >= 8.0 addtionally set the variable CARMAKER_DIR to

set(CARMAKER_DIR $ENV{IPGHOME}/carmaker/linux64-${CARMAKER_VER})

 src/Makefile

 The Makefile rule to build the CarMaker executable needs to be extended that the shared

library for the CarMaker ROS Interface can be loaded properly. Please add following lines

e.g. after the LD_LIBS and OBJS_*.block of the original CarMaker Makefile.

CarMaker extension CMRosIF (provided by IPG)

DEF_CFLAGS += -DWITH_CMROSIF

LD_LIBS_OS += -lCMRosIF-$(ARCH)

LDFLAGS += -L./../lib/

LDFLAGS += -Wl,-rpath,'$$ORIGIN/../lib/'

INC_CFLAGS += -I../include

CFLAGS += -rdynamic

 src/User.c

 Copy the lines marked with “WITH_CMROSIF” from “User.c_CMRosIF” to your User.c”. If

not documented otherwise in the CarMaker RealeaseNotes the file can be used directly.

 CMStart.sh

 Update CarMaker GUI version to be started

 Information concerning build procedure and startup are decribed in chapter “2.3 Build

necessary Parts” ff.

IPG Automotive GmbH 12 Date: May 23rd, 2019

Documentation

Folder/File Overview

4.2 Folder/File Overview

The paths below are relative to the CarMaker Project Directory and describe the structure and

content after Installation of the files for CMRosIF. The structure can be adapted for different use

cases (references in files have to be updated).

Figure 8: Folder/File overview for the example

Description of most relevant folders/files:

 build_cmrosif.sh

 Buids ROS workspace and CarMaker. Experimental for fast ramp up of the examples!

 CMStart.sh

 Start CarMaker GUI and loads GUI extension. “build_cmrosif.sh” has to be executed before

(for this example only once)

IPG Automotive GmbH 13 Date: May 23rd, 2019

Documentation

Folder/File Overview

 Data/Config/CMRosIFParameters

 CarMaker Infofile with parameters for CarMaker ROS Interface and CarMaker ROS Node

 Enable/Disable Interface/Clock Server

 Arguments for CarMaker ROS Node for remapping arguments

 e.g. "Cfg.Args = __ns:=MyNamespace" to push down all Topics, ...

 Accessible via " CM Main GUI -> Extras -> CMRosIF -> Edit Parameters"

 More Information see “4.4 Parameterization with Infofile”

 GUI/

 Folder for CarMaker GUI Extension of current CarMaker Project Directory

 The mod files can be copied to CarMaker installation folder to be available globally

 CMExt-CMRosIF.mod: see chapter “4.3 CarMaker GUI Extension”

 include/

 Folder with additional include files

 The header CMRosIF.h for CarMaker ROS Interface is located in this folder

 src/

 CarMaker source folder with files for user accessible modules of the CMRosIF extension

 Makefile

 Default CarMaker Makefile with additional flags/libraries for CMRosIF

 Building CarMaker executable with CMRosIF

 User.c

 Calling functions of CarMaker ROS Interface provided by “lib/.../CMRosIF.so”

 see "include/CMRosIF.h" for more details

 ros/ros1_ws/

 Native ROS1 catkin workspace with user packages (messages, nodes, …)

 Including Topics and Services as well as the external ROS Node and shared library for

CarMaker ROS Node for the HelloCM example

 The workspace might be also set as an symlink to an already existing ROS workspace

 build.sh or build4eclipse.sh

 Build scripts for the ROS workspace. While “build.sh” runs just a simple build,

build4eclipse.sh prepares the ROS “/build” folder for a eclipse project that can be

imported to eclipse (inside eclipse: “File -> Import -> Existing Projects into Workspace”)

 src/hellocm

 Source code for external ROS node (independent from CarMaker)

 src/hellocm_cmnode

 Source code for shared library with CarMaker ROS Node

 Including wrapper functions for CMRosIF

 src/hellocm_msgs

 Messages and Services used by the nodes above

 src/cmrosutils

General utilities when using ROS in combination with CarMaker (under development)

IPG Automotive GmbH 14 Date: May 23rd, 2019

Documentation

CarMaker GUI Extension

4.3 CarMaker GUI Extension

The CarMaker ROS Interface comes up with an optional CarMaker GUI extension module. The

extension provides an extra menu “CM Main GUI -> Extras -> CMRosIF” in the CarMaker Main

GUI. The menu extension is included in the file “CMExt-CMRosIF.mod”. This file can be placed

inside “<CMinstDir>/GUI” to be globally available or inside CarMaker Project Directory and loaded

via an additional command line argument “-ext <Name of *.mod file”” when starting the CarMaker

GUI, e.g. if mod file is located in a folder “<CMProjDir>/GUI” the command is

 “CM . –ext GUI/CMRosIF.mod” or CM-7.1.2 . –ext GUI/CMRosIF.mod

For the CMRosIF example with CarMaker Project Directory, the command line is located in the

script “CMStart.sh”. It is necessary that the CarMaker installation path has been added to the

systems search path (please check chapter “4.1 Installation” for additional information).

Figure 9: CarMaker GUI Extension

Following commands are currently available:

Launch

This command starts a new terminal, sources the script “<CMProjDir>/ros_setup.bash” and

executes the ROS program “roslaunch”. An already opened Terminal (e.g. executing the ROS Core

and ROS Nodes) started with a previous “Launch” execution will be stopped if the feature

“TerminalCmd” is enabled. The arguments for “roslaunch” can be parameterized in the Infofile

“<CMProjDir>/Data/Config/CMRosIFParameters”. (see chapter “4.4 Parameterization with Infofile”)

Launch & Start Application

This command works like the command “Launch” described above, but additionally the CarMaker

executable is started. An already running executable will be stopped. This allows a complete

start/restart of the simulation setup. Several parameters influence the startup (e.g. Cfg.Features).

Please check the chapter “Parameterization with Infofile” for more information. Please ensure that

the correct CarMaker executable is selected (“CM Main GUI -> Application -> Configuration/Status”)

IPG Automotive GmbH 15 Date: May 23rd, 2019

Documentation

CarMaker GUI Extension

<Restart/Stop> ROS Core/Daemon

“Restart” stops the currently running roscore and starts again. “Stop” just stops the process.

Normally not necessary when using the command “Run launch file” where the rocscore is

automatically started with the other ROS nodes.

Start rqt

This command starts a new terminal, sources the script “<CMProjDir>/ros_setup.bash” and

executes the ROS program “rqt”. The arguments for “rqt” can be parameterized in the Infofile

“<CMProjDir>/Data/Config/CMRosIFParameters”. (see chapter “4.4 Parameterization with Infofile”)

List <Basic/Nodes/Topics/Services>

The commands run the corresponding ROS programs rostopic, rosnode, rosservice and prints the

output to the CarMaker ScriptControl window.

Edit Parameters

This command opens the Infofile “<CMProjDir>/Data/Config/CMRosIFParameters” for editing. (see

chapter “4.4 Parameterization with Infofile”).

If nothing happens it is possible that the default editor is not set correctly. For Ubuntu and before

CM6.0.4 there is an additional mod file “CMExt-GUI_PatchUbuntu.mod” that fixes this issue starting

“gedit”. If another Editor should be used the Tcl variable “$Pgm(TextEditor.linux)” can be

manipulated e.g. via ScriptControl (current session only, e.g. “set ::Pgm(TextEditor.linux) gedit”), an

entry with the same command in the file “.CarMaker.tcl” located in the root directory of the

CarMaker Project Directory or your home directory.

IPG Automotive GmbH 16 Date: May 23rd, 2019

Documentation

Parameterization with Infofile

4.4 Parameterization with Infofile

Following paramaters can be used to parameterize the ROS Independent CarMaker ROS Interface.

The parameters allow a modification of internal mechanism and e.g. arguments provided to

CarMaker ROS Node for the function “CMRosIF_CMNode_Init()”.

The parameters are managed in different groups with own prefix

 Cfg.* : General configuration of CMRosIF

 Launch.* : Parameters related to the command “CM Main GUI->Extras->Run launch file”

 rqt.* : Parameters related to the command “CM Main GUI->Extras->Start rqt”

 Node.* : Parameters used inside CarMaker ROS Node. Depending on Node design!

4.4.1 General Configuration

Cfg.Lib.Path

This parameter is not optional!

Path to the shared library with CarMaker ROS Node. The path can be absolute or relative to current

CMProjDir. The shared library is currently loaded at startup of the CarMaker executable.

Example:

“Cfg.Lib.Path = ./ros/ros1_ws/install/lib/libCMNode_ROS1_HelloCM.so“

Cfg.Mode

This parameter is optional! Default = 1

The CarMaker ROS Interface can be disabled (Cfg.Mode=0). In this case the shared library with

CarMaker ROS Node is not loaded after starting the CarMaker executable and no CarMaker ROS

Node will be available. Standard functions provided by “CMRosIF.h” can still be called but will not

have any effect. User functions received with “CMRosIF_GetSymbol()” will be NULL pointers and

have to be managed by the user (e.g. “if (MyFunc != NULL) MyFunc();”)!

Cfg.Name

This parameter is optional! Default = “CMNode”

Name of the CarMaker ROS Node provided as argument by “CMRosIF_CMNode_Init()”. The string

is normally provided to “ros::init()” inside CarMaker Ros Node. The naming will be affected by the

remapping arguments that can be provided with the “Cfg.Args” infofile parameter (e.g. to push the

whole node into own namespace).

IPG Automotive GmbH 17 Date: May 23rd, 2019

Documentation

Parameterization with Infofile

Cfg.Args

This parameter is optional! Default = “”

The parameter string is mapped to the Argc and Argv arguments provided by the function

“CMRosIF_CMNode_Init()” and can be provided to the ROS function “ros::init()”. This allows the

user providing arguments in a style of a standalone ROS node executable where the arguments

Argc and Argv are provided by the “main()” function (e.g. for remapping arguments, …).

Remapping arguments can’t be provided directly as arguments to the CarMaker executable!

Example:

If “Cfg.Args = __ns:=MyVhcl” “CMRosIF_CMNode_Init()” will provide Argc=2 and e.g.

Argv[1]= “__ns:=MyVhcl”. When provided to “ros::init()” Node name, Topics, etc. will be pushed

down to the ROS namespace “/MyVhcl” (e.g. Node name “/CMNode” will be “/MyVhcl/CMNode”.

Cfg.Features

This parameter is optional! Default = “TerminalCmd”

The parameter allows a space separated list with different special features available for the

CMRosIF.

 AutoStart (experimental)

 Enables an automated mechanism when CarMaker TestRun is started

 Stopping ros launch and CM executable

 Start of ros launch file and CM executable

 calls "Cfg.LaunchProc" in context "startsim"

 TerminalCmd (experimental, Ubuntu only)

 Mechanism to handle multiple Terminals

 Automatic termination of launch terminal

 Optional multi terminal/tab mechanism

 Managing different tabs and terminals and run multiple launch files in same (one tab for

each) or multiple terminals

 Create additional terminals with Linux commands

 Check "Cfg.UserUtils.FPath" and "Cfg.LaunchProc"

 Additional parameterization via keys

 <pre> = "Cfg.TerminalCmd"

 "<pre>.startwait" = Time to wait in ms after start command was executed

 "<pre>.stopwait" = Time to wait in ms after terminal stop request

4.4.2 Launchfile and rqt

Launch.Args

Arguments provided to the ROS program “roslaunch” when the GUI command

“CM Main GUI->Extras->CMRosIF->Run launch file” is used.

IPG Automotive GmbH 18 Date: May 23rd, 2019

Documentation

Parameterization with Infofile

Example:

“Launch.Args = hellocm hellocm.launch use_sim_time:="true"” will run the launch file

“hellocm.launch” from ROS package “hellocm” providing the argument “use_sim_time:="true"”.

rqt.Args

Arguments provided to the ROS program “roslaunch” when the GUI command “CM Main GUI-

>Extras->CMRosIF->Start rqt” is used.

4.4.3 CMNode Internal and Clock Server

Node.Mode

Usage depends on node design! See source files of CarMaker ROS Node for more information.

The intention of this parameter is to set an node internal mode.

 e.g. 0=Off, 1=Enabled, 2=ThreadedSpin, … .

Node.Sync.Mode

Usage depends on node design! See source files of CarMaker ROS Node for more information.

The synchronization mechanism is currently under investigation. Currently external ROS nodes can

be synchronized only via the “/clock” Topic published by the CarMaker ROS Node. But CarMaker

does not wait for the answer, so incoming Topics may arrive delayed and not in an deterministic

way.

The intention of this parameter is to set an node internal synchronization mode.

 e.g. 0=NoSync, 1=SyncViaTopics, … .

Node.Sync.TimeMax

Usage depends on node design! See source files of CarMaker ROS Node for more information.

Defines the timeout in seconds if synchronization is enabled. By default CarMaker will throw an

error and stops the current TestRun if the expected Topic is not received within this timeout.

Node.UseSimTime

Usage depends on node design! See source files of CarMaker ROS Node for more information.

If this parameter is set to “1” CarMaker will act as ROS Clock Server by setting the ROS parameter

“/use_sim_time” and publishing the current simulation time every “Node.nCyclesClock” cycles.

Node.nCyclesClock

Usage depends on node design! See source files of CarMaker ROS Node for more information.

Number of CarMaker cycles. Generally duration for 1 cycle is 1ms.

IPG Automotive GmbH 19 Date: May 23rd, 2019

Documentation

Build Process

4.5 Build Process

Chapter “2.3 Build necessary Parts” shows how to build the example with a special script file. All

the steps can be executed by hand as described below.

4.5.1 ROS Workspace

The ROS workspace (e.g. <CMProjDir>/ros/ros1_ws”, native ROS workspace) contains the script

“build.sh”, that makes some preparation (e.g. sourcing “setup.bash” from ROS installation) and

executes the default ROS command “catkin_make install” (default behaviour). All packages located

in “src” folder below the workspace will be built. A package can be ignored by adding the file

“CATKIN_IGNORE” to the root level of a package (e.g “src/hellocm/CATKIN_IGNORE”).

The location of the ROS workspace inside a CarMaker Project Directory is optional. The ROS

workspace can be also in a different place and linked via symbolic link. Without a link inside

“<CMProjDir>/ros/” some features shown with the provided example might not work.

For detailed information check http://wiki.ros.org/catkin/workspaces.

For the provided example all code with ROS dependency is located in this workspace (e.g. external

ROS Node and shared library for CarMaker ROS Node, …).

4.5.2 Shared Library with CarMaker ROS Node

The shared library with CarMaker ROS Node is built within the ROS workspace in an own ROS

package (e.g. <CMProjDir>/ros/ros1_ws/hellocm_cmnode).

 The path to the shared library with CarMaker ROS Node dynamically loaded inside CarMaker

executable can be adapted by editing the parameter “Cfg.Lib.Path” (see 4.4.1 General

Configuration)

 The source code of the shared library contains C functions that are not allowed to be renamed

(otherwise the Interface won’t find correct symbols)

 Additional user defined functions can be created inside the library and used e.g. inside User.c

via function pointers (see example code for CMNode, User.C and “CMRosIF.h”)

 Code to CarMaker Data (e.g. Sensors and Vehicle Model) can be directly accessed inside the

code for the shared library with CarMaker ROS Node. Just add the necessary header from

“<CMInstDir>/include”. Please note that the shared library will have dependency to the

CarMaker libraries and CarMaker Version at compile time! For a new CarMaker Version

(especially new major release) the library needs to be recompiled.

 The CarMaker Version (path and version number) can be adapted in the “CMakeLists.txt”.

Please check “CMakeLists.txt” and “package.xml” inside the CMNode package for more

information.

http://wiki.ros.org/catkin/workspaces

IPG Automotive GmbH 20 Date: May 23rd, 2019

Documentation

Interaction of CarMaker and Shared Library with CarMaker

ROS Node

4.5.3 CarMaker Executable with CarMaker ROS Interface

The CarMaker executable with CarMaker ROS Interface is built with the CarMaker Makefile, e.g.

located in “<CMProjDir>/src” and can be built by opening a new terminal and executing “make”

inside this folder (more information see “Programmers Guide”). The CarMaker executable for this

example normally only needs to be compiled after modifications in CarMaker user modules (User.c,

…) or when the CMRosIF API has changed.

The CarMaker ROS Interface currently consists of a header e.g. “<CMProjDir>/include/CMRosIF.h”

and a shared library e.g. “<CMProjDir>/lib/<platform>/<CMVersion>/libCMRosIF.so”. The shared

library is linked with the CarMaker executable and is automatically loaded at startup.

4.6 Interaction of CarMaker and Shared Library with CarMaker

ROS Node

The shared library with CarMaker ROS Node is not directly linked to CarMaker executable. When

calling the initialization function for the CarMaker ROS Interface e.g. inside “User.c” the shared

library with CarMaker ROS Node parameterized by “Cfg.Lib.Path” (see 4.4 Parameterization with

Infofile) will be loaded during runtime of the CarMaker executable. Commonly used default

functions are already existing (see “CMRosIF.h”). These functions call internal function pointers.

These function pointers get the related functions from the shared library with CarMaker ROS Node.

For example, the function “CMRosIF_TestRun_Start_atBegin()” from the CMRosIF will call

“CMRosIF_CMNode_TestRun_Start_atBegin()” from the shared library with CarMaker ROS

Node.

The “CMRosIF_Init()” has to be called before any other function from the CMRosIF API.

Additional user functions can be defined inside the shared library with CarMaker ROS Node

within the “extern “C”” block. The function “CMRosIF_GetSymbol()” allows to search for

functions/Symbols inside the dynamically loaded library with CarMaker ROS Node and returns a

function pointer that can be used e.g. in User.c. Check “User.c” and source code for shared library

for an example.

Variables from the CarMaker environment can be directly accessed by including the relevant

CarMaker headers (e.g. “Vehicle.h” for vehicle velocity, …) located in the CarMaker installation

directory (e.g. “/opt/ipg/hil/linux/include”) to the shared library with CarMaker ROS Node. Libraries

for linking are located in the “lib/” folder of the CarMaker installation directory.

IPG Automotive GmbH 21 Date: May 23rd, 2019

Documentation

Job Mechanism (experimental)

4.7 Job Mechanism (experimental)

The job mechanism can be used to execute one or more cyclic task (e.g. publish topic, copy data

from message buffer to vehicle model, …) dependent on e.g. the CarMaker cycle number relative to

simulation start. This allows us to pusblish data e.g. every 10ms with an offset of e.g. 5ms.

Currently two different modes are available

 “Default Mode”

 “Extended Mode”

While the “Default Mode” can be used to realize cyclic tasks as mentioned above, the extended

mode expects a preparatory task to be finished before the actual task can start.

The basic workflow for the job mechanism is

1. Create a job handle via CMCRJob_Create()

2. Initialize job via CMCRJob_Init()

3. Optional (Only for “Extended Mode”)

a. Check every simulation cycle if a preparation for this job needs to be done in current cycle

via CMCRJob_DoPrep()

 Optional: Manual confirmation that all preparation tasks related to this job have been

finished via CMCRJob_DoPrep_SetDone()

b.

4. Check every simulation cycle if a job needs to be done in current cycle via CMCRJob_DoJob()

a. Optional: Manual confirmation that all tasks related to this job have been finished via

CMCRJob_DoJob_SetDone()

5. Reinitialize for next simulaton loop via CMCRJob_Init() or delete via CMCRJob_Delete()

The job mechanism is independent from ROS and only available inside the CarMaker ROS

Node. Please check the header “/ros/ros1_ws/src/cmrosutils/include/cmrosutils/CMRosIF_Utils.h”

for more information concering available functions and the ROS package “hellocm_cmnode” for

general usage!

IPG Automotive GmbH 22 Date: May 23rd, 2019

Documentation

Process Synchronization (experimental)

4.8 Process Synchronization (experimental)

By default ROS is a non-deterministic software framework that transfers messages between

several Nodes using the publish/subscribe mechanism. The effective time until a message is

received depends on the system workload and transmission path. So multiple processes run

independent that may results in non-reproducible simulations. If running the simulaiton in soft real

time the effect might be small and is acceptable for many use cases. But running CarMaker with

maximum simulation speed the relative time until a message is transferred is relevant for the

simulation result.

Therefore a simple example of a topic based synchronization between an external ROS Node and

the CarMaker ROS Node is available that forces CarMaker to wait until a free parameterizable

message is received. The synchronization is based on an internal cycle counter and the knowledge

of expected cycle time of the external Node inside the CarMaker Node.

The mechanism can be used in different ways

1. Simulation time based synchronization

 The ROS “/use_sim_time” mechanism needs to be activated

 CarMaker ROS Node has to act as clock server

 ROS Timer inside extrernal ROS Node that reacts on changes in simulation time

 Provide cycle time and topic name for synchronization to CarMaker ROS Node

2. Data triggered synchronization

 ROS Node interaction with one or more calculation chains, each chain finishes with topic in

CarMaker ROS Node that is used for synchronization

 One ore more subscription(s) in external ROS Node(s)

 Includes algorithm, etc.

 ROS publish at end of calculation chain

 Provide cycyle time and topic name for synchronization to CarMaker ROS Node

 CarMaker ROS Node waits in specific cycle until all messages have arrived

The simulation time based synchronization is implemented in the example described in chapter

“HelloCM”. The effect of synchronization is shown in chapter “Topic based Synchronization”.

IPG Automotive GmbH 23 Date: May 23rd, 2019

Release History

Version 0.6.8

5 Release History

5.1 Version 0.6.8

General

 Updatet User.c and Makefile for CarMaker executable in “<CMProjDir>/src/”

 Default target for ROS build and examples is “devel” (before “install”)

 Added script “<CMProjDir>/ros/ros1_ws/src/build4eclipse.sh”

 Builds a catkin workspace with eclipse project files inside the “build” folder and allows a

direct import as eclipse project

 According to “Catkin-y approach” described on http://wiki.ros.org/IDEs#Eclipse

 The script can be called manually on demand

 Now the demo package is independent from CarMaker version and can be easily integrated

into an already existing CarMaker Project Directory

Examples: HelloCM

 New example for topic based synchronization

 New job mechanism für cyclic data publishing on CMNode Side

 Renamed ROS messages and restructured global variables for CMNode and external ROS

Node

GUI

 New menu entry “Launch & Start Application”

 New experimental feature “TerminalCmd”

 Manages terminal started via CarMaker GUI e.g. menu entry “CM Main GUI -> Extras ->

CMRosIF-> Launch”

 More information see chapter “Parameterization with Infofile” and parameter

“Cfg.Features”

http://wiki.ros.org/IDEs#Eclipse

	1 Overview
	1.1 System Requirements
	1.2 Concept

	2 Quick Start
	2.1 General Information
	2.2 Installation and Preparation
	2.2.1 ROS
	2.2.2 CarMaker and CMRosIF

	2.3 Build necessary Parts
	2.4 Run the Example
	2.5 Check the Communication with ROS Tools
	2.6 Parameter Manipulation

	3 Examples
	3.1 HelloCM
	3.1.1 Topic based Synchronization

	4 Documentation
	4.1 Installation
	4.2 Folder/File Overview
	4.3 CarMaker GUI Extension
	4.4 Parameterization with Infofile
	4.4.1 General Configuration
	4.4.2 Launchfile and rqt
	4.4.3 CMNode Internal and Clock Server

	4.5 Build Process
	4.5.1 ROS Workspace
	4.5.2 Shared Library with CarMaker ROS Node
	4.5.3 CarMaker Executable with CarMaker ROS Interface

	4.6 Interaction of CarMaker and Shared Library with CarMaker ROS Node
	4.7 Job Mechanism (experimental)
	4.8 Process Synchronization (experimental)

	5 Release History
	5.1 Version 0.6.8

