

Deterministic Stress Testing Method for Generation of Critical Scenarios

Dipl.Ing. Demin Nalic

Institute for Automotive Engineering

- Contents
 - **Motivation** \bullet
 - **Co-Simulation framework** lacksquare
 - Test framework in Vissim DLL Framework •
 - Deterministic Stress Testing Method (DSTM) ullet
- Results and Summary •

- Virtual testing of ADS/ADAS
- Requirements:

- Complex and realistic vehicle models
- Implementation and adaptaion of suitable algorithms
 - Vehicle dynamics
 - Assistant systems
 - Sensors
- Realistic vehicle environment and visualisation
- Realistic and stochastic traffic

Co-Simulationsframework: Concept

Co-Simulationsframework: MATLAB Application

\Lambda FTG Tool				-	\times
ile Help					
Start Configuration	Vissim	Configuration			
	-				
Configuration of Co	ompositio	ns			
Compositions					
Compositions		Vahialaa			
Comp2	A	venicies			
Comp3		Car1	Distribution	Alpl ab 100 km/h Viv	
Comp4		Car2	Distribution		
Comp6		Car3	Туре	VissimIF_Car2 VissimIF_Car2	
Comp7			Vobiclo %	46	
Comp8			venicle 70	40 👻	
Comp9	-				
Configuration of In	put Volum	ies			
Volumes					
GO_LG_Input_1		Input volume	2339		
GO_LG_Input_2		Composition	(0		
GF_LG_Input_1		Composition	Comp2	•	
GW_GL_Input_2	2				
GW_GL_Input_1					
GW_GL_Input_3	•				

4. Application

Co-Simulationsframework: Cluster Mode

Traffic data from the ALP.Lab test road

- 21 Counter points
- Measurement time 01.10.2017 31.03.2018
- Vehicle inputs, vehicle compositions, driver models and speed distributions are calibrated and modelled

Demin Nalic, FTG TU Graz 18.10.2020

DLL Framework: Motivation und Concept

Safety relevant scenarios are rarely ocure in the IPG-Vissim Co-Simulation Solution:

- Manipulation of traffic participants
- External Driver Model DLL Interface
- Framework is based on the Vissim interface provided in C++
 - Manipulation
 - ADS functionalities
 - Test cases for different applications (Platooning, Collon stability etc.)

DLL Framework: Concept

-3,632

4,000

Deterministic Stress Testing Method

- Accident database of Statistic Austria
- 9 Accident types
 - Each accident type has subtypes
- For the DSTM 2 accident types:
 - Longitudinal scenarios
 - Stationary vehicle -
 - Moving vehicle with speed reduction
 - Lateral scenarios
 - Lane change

Number of Accidents

 $3,\!000$

1,912

2,000

9

8

6

5

9

 $\mathbf{2}$

418

374

407

1,000

22

-23

0

210

6.000

4,933

5,000

Stress Testing Method: Longitudinal scenarios

- Three columns
 - TVC_1 , TVC_2 , TVC_3
- Distances to the target vehicles
 - *d*_{i,j} with index i for the current lane and index j- for the column
- Calculation of the event matrix

$$\mathbf{E}_{T}^{l^{2}} = \begin{bmatrix} e_{1,1}^{l^{2}} & e_{1,2}^{l^{2}} & e_{1,3}^{l^{2}} \\ e_{2,1}^{l^{2}} & e_{2,3}^{l^{2}} & e_{2,3}^{l^{2}} \end{bmatrix} \in \mathbb{R}^{2\mathbf{x}3}$$
$$\mathbf{E}_{T}^{l^{3}} = \begin{bmatrix} e_{1,1}^{l^{3}} & e_{1,2}^{l^{3}} & e_{1,3}^{l^{3}} \\ e_{2,1}^{l^{3}} & e_{2,3}^{l^{3}} & e_{2,3}^{l^{3}} \\ e_{3,1}^{l^{3}} & e_{3,3}^{l^{3}} & e_{3,3}^{l^{3}} \end{bmatrix} \in \mathbb{R}^{3\mathbf{x}3}$$

Stress Testing Method: Longitudinal scenarios

$$\mathbf{E}_{T}^{l^{3}} = \begin{bmatrix} e_{1,1}^{l^{3}} & e_{1,2}^{l^{3}} & e_{1,3}^{l^{3}} \\ e_{2,1}^{l^{3}} & e_{2,3}^{l^{3}} & e_{2,3}^{l^{3}} \\ e_{3,1}^{l^{3}} & e_{3,3}^{l^{3}} & e_{3,3}^{l^{3}} \end{bmatrix} \in \mathbb{R}^{3\times3} \quad e_{i,j}^{l^{2}} = e_{i,j}^{l^{3}} = \begin{cases} 1, & d_{1}^{TVC} < d_{i,j} < d_{2}^{TVC} \\ 1, & d_{2}^{TVC} < d_{i,j} < d_{3}^{TVC} \\ 1, & d_{3}^{TVC} < d_{i,j} < d_{max}^{TVC} \\ 0, & otherwise \end{cases} \quad \mathbf{E}_{T}^{l_{3}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

12

• Definition of relevant combinations

$$\mathbf{E}_{T}^{3} = \begin{bmatrix} 1 & \mathbf{1} & 0 \\ 0 & \mathbf{1} & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$\mathbf{C}_{q}^{l_{3}} = \begin{bmatrix} X & \mathbf{1} & X \\ X & \mathbf{1} & X \\ X & X & X \end{bmatrix}$$
$$e_{1,2} = e_{2,2} = c_{1,2} = c_{2,2}$$

$$\mathbf{C}_{q}^{l_{3}} = \begin{bmatrix} c_{1,1}^{l_{3}} & c_{1,2}^{l_{3}} & c_{1,3}^{l_{3}} \\ c_{2,1}^{l_{3}} & c_{2,2}^{l_{3}} & c_{2,3}^{l_{3}} \\ c_{3,1}^{l_{3}} & c_{3,3}^{l_{3}} & c_{3,3}^{l_{3}} \end{bmatrix} \in \mathbb{R}^{3\times3}$$

	$c_{1,1}^{l_3}$	$c_{1,2}^{l_3}$	$c_{1,3}^{l_3}$	$c_{2,1}^{l_3}$	$c_{2,2}^{l_3}$	$c_{2,3}^{l_3}$	$c_{3,1}^{l_3}$	$c_{3,2}^{l_3}$	$c^{l_3}_{3,3}$
$C_{1}^{l_{3}}$	1	Х	Х	1	Х	Х	1	Х	Х
$C_{2}^{l_{3}}$	Х	1	Х	Х	1	Х	Х	1	Х
$C_{3}^{l_{3}}$	Х	Х	1	Х	Х	1	Х	Х	1
$C_{4}^{l_{3}}$	1	Х	Х	Х	Х	Х	Х	Х	X
$C_{5}^{l_{3}}$	Х	Х	Х	1	Х	Х	Х	Х	Х
$C_{6}^{l_{3}}$	Х	Х	1	Х	Х	Х	1	Х	Х
$C_{7}^{l_{3}}$	Х	1	Х	Х	Х	Х	Х	Х	Х
$C_{8}^{l_{3}}$	Х	Х	Х	Х	1	Х	Х	Х	Х
$C_{9}^{l_{3}}$	Х	Х	1	Х	Х	Х	Х	1	Х
$C_{10}^{l_3}$	Х	Х	1	Х	Х	Х	Х	Х	X
$C_{11}^{l_3}$	Х	Х	Х	Х	Х	1	Х	Х	X
$C_{12}^{l_3}$	Х	Х	Х	Х	Х	Х	Х	Х	1

Stress Testing Method: Longitudinal scenarios – Vissim implementation

Stress Testing Method: Longitudinal scenarios – With collision

Stress Testing Method: Longitudinal scenarios– Speed reduction

Stress Testing Method: Vertical scenarios

• Lane change to left and right

IFTG

Stress Testing Method: Vertical scenarios - Video

Stress Testing Method: Results

- Simulation with 1000 test kilometers with and without DSTM
 - Evaluation

IFTG

- Collision
- Cut-In's
- Near-Collisions (Distance and TTC)

	Without DSTM	With DSTM
Collisions	None	47
Near Collisions	68	289
Cut-In's	167	723

Summary

IFTG

- With DSTM, the number of detected scenarios can and has been increased.
- With additional metrics, there is the possibility of generating and detecting further scenarios
 - Provocation of critical maneuvers / scenarios
 - Expanded the testing process
 - Possibilities for various other applications for testing ADAS / ADS

[1] Nalic, D., Eichberger, A., Fellendorf, M., Hanzl, G., & Rogic, B. (2019). *Development of a Co-Simulation Framework for Systematic Generation of Scenarios for Testing and Validation of Automated Driving Systems*.. 1-7. Beitrag in 22nd IEEE International Conference on Intelligent Transportation Systems, Auckland, Neuseeland.

[2] Nalic, D., Pandurevic, A., Eichberger, A., & Rogic, B.. *Design and Implementation of a Co-Simulation Framework for Testing of Automated Driving Systems*. 1-6. Beitrag in Electric-Vehicle, Smart-Grid and Information Technology, Jeju, Südkorea.

In preparation

IFTG

20

[3] Nalic, D., Li, H., Pandurevic, A., Eichberger, A., & Wellershaus, C. (2020). Stress Testing Method for Scenario Based Verification of Automated Driving Systems.

[4] Nalic, D., Pandurevic, A., & Eichberger, A. (2020). Software Framework for Testing of Automated Driving Systems in a Dynamic Traffic Environment.

Thank you for attention

Apply& Innovative TECH WEEK - Dipl. Ing. Demin Nalic B.Sc. 18.10.2020

SCIENCE PASSION TECHNOLOGY

