

Research partnership in technology innovation

Title

Tire wear affecting motorcycle dynamic

Elisabetta Leo, Christian Pagliara, Marco E. Pezzola

Soluzioni Ingegneria srl

marco.pezzola@si-ita.it

INTRO & MOTIVATIONS

TIRE OPERATIVE CONDITIONS CHANGE WHILE RIDING

INTRO & MOTIVATIONS

02/09/2020

DIFFERENT OPERATIVE CONDITIONS MEANS:

MOTORCYCLE BEHAVIOUR SHOULD BE VERIFIED FOR ALL THE PLAUSIBLE TIRE'S OPERATIVE CONDITIONS

IPG Automotive – Apply & Innovate TECH WEEKS 2020

TARGET

TO INVESTIGATE THE EFFECTS OF TIRE WEAR ON BOTH THE LATERAL AND THE LONGITUDINAL MOTORCYCLE DYNAMIC

TO PROPOSE A PACEJKA MF MODIFICATION INCLUDING THE WEAR DEPENDENCY

02/09/2020

- 2. LONGITUDINAL: OUTDOOR TESTS
- 3. LONGITUDINAL: INDOOR TESTS
- 4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION
- 5. LATERAL: OUTDOOR TESTS
- 6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION
- 7. CONCLUSIONS

OUTDOOR TESTS

Instrumentation

oluzio

1. INSTRUMENTATION (OUTDOOR TESTS)

2. LONGITUDINAL: OUTDOOR TESTS

3. LONGITUDINAL: INDOOR TESTS

4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION

5. LATERAL: OUTDOOR TESTS

6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION

7. CONCLUSIONS

Test Scenario&manoeuver

ROAD	MANOEUVER		
Straight line road High grip surface (dry tarmac)	 FULL BRAKING MANOEUVER. ABS system status: active Vehicle speed before braking: constant@85 km/h 15x test repetitions, at least 		
<image/>	$\mathbf{u}_{\mathbf{u}} = \mathbf{u}_{\mathbf{u}} = $		

Test Scenario&manoeuver

ROAD	MANOEUVER		
ROAD Straight line road High grip surface (dry tarmac)	MANOEUVERFULL BRAKING MANOEUVER.• ABS system status: active• Vehicle speed before braking: constant@85 km/h• 15x test repetitions, at least		
	 In case of worn tire: I lower time to halt (lower braking distance); I higher avarage deceleration. 		

Summary

DIFFERENT TIRES MODELS HAVE BEEN TESTED; THE TREND HAS BEEN CONFIRMED

WORN TIRES PERFORM HIGHER BRAKING DECELERATION

RIDERS PERCEPTIONS CONFIRM EXPERIMENTAL EVIDENCE

IPG Automotive – Apply & Innovate TECH WEEKS 2020

LONG. DYN.

IPG Automotive – Apply & Innovate TECH WEEKS 2020

OUTLINE

1. INSTRUMENTATION (OUTDOOR TESTS)

2. LONGITUDINAL: OUTDOOR TESTS

3. LONGITUDINAL: INDOOR TESTS

4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION

5. LATERAL: OUTDOOR TESTS

6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION

7. CONCLUSIONS

13 02/09/2020

Longitudinal stiffness & Maximum friction

Longitudinal stiffness & Maximum friction

Longitudinal stiffness & Maximum friction

QUASI-STATIC CHARACTERIZATION. PROCEDURE.

Longitudinal stiffness & Maximum friction

QUASI-STATIC CHARACTERIZATION. PROCEDURE.

□ IMPOSED SLIP RATIO SINUSOIDAL PROFILE WITH A PERIOD OF 5 s (0,2 Hz) □ MEASURED LONGITUDINAL FORCE □ THE ENGAGED FRICTION COEFFICIENT Mu_x IS COMPUTED AND PLOT VS SLIP RATIO→ A SCATTER PLOT IS ACHIEVED □ DATA FITTING THROUGH PACEJKA MAGIC FORMULA: THE LONGITUDINAL STIFFNESS (Kx) AND THE MAXIMM GRIP ($\mu_{max,x}$) CAN BE IDENTIFIED

Longitudinal stiffness & Maximum friction

QUASI-STATIC CHARACTERIZATION. NEW and WORN TYRE BEHAVIOUR.

DATA HAVE BEEN PLOT AS A FUNCTION OF THREAD WEAR VARIATION, NAMED dTW:

dTW = - (h-h0)/h0

h0: thread height while new tireh: thread height at a generic wearingcondition

Longitudinal stiffness & Maximum friction

QUASI-STATIC CHARACTERIZATION. NEW and WORN TYRE BEHAVIOUR.

Longitudinal stiffness & Maximum friction

QUASI-STATIC CHARACTERIZATION. NEW and WORN TYRE BEHAVIOUR.

Longitudinal stiffness & Maximum friction

Relaxation length

Relaxation length

Relaxation length

Relaxation length

25 02/09/2020

Relaxation length

26 02/09/2020

Relaxation length

WEAR

LEVEL

IPG Automotive – Apply & Innovate TECH WEEKS 2020

Relaxation length

WEAR

LEVEL

02/09/2020 28

Relaxation length

WEAR

LEVEL

HYSTERESIS

The proposed results state:

THE RELAXATION LENGTH INCREASES AS THE TIRE WEAR INCREASES.

IPG Automotive – Apply & Innovate TECH WEEKS 2020

Summary

LONG. DYN.: INDOOR TEST

Results Explanation

THE HIGHER BRAKING PERFORMANCES OBSERVED DURING OUTDOOR TESTS ARE DUE TO HIGHER GRIP

(relaxation length and longitudinal stiffness have no perceivable effects instead)

02/09/2020

1. INSTRUMENTATION (OUTDOOR TESTS)

2. LONGITUDINAL: OUTDOOR TESTS

3. LONGITUDINAL: INDOOR TESTS

4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION

5. LATERAL: OUTDOOR TESTS

6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION

7. CONCLUSIONS

MF MODIFICATION TO INCLUDE WEAR EFFECT

02/09/2020

33

Longitudinal stiffness, relaxation length, maximum friction

MF MODIFICATION TO INCLUDE WEAR EFFECT

02/09/2020

Longitudinal stiffness, relaxation length, maximum friction

MF MODIFICATION TO INCLUDE WEAR EFFECT

Longitudinal stiffness, relaxation length, maximum friction

Premise

02/09/2020

36

If no indoor tests are available?

ON-ROAD CHARACTERIZATION METHODOLOGY HAS BEEN DEVELOPED

IPG Automotive – Apply & Innovate TECH WEEKS 2020

02/09/2020

- 1. INSTRUMENTATION (OUTDOOR TESTS)
- 2. LONGITUDINAL: OUTDOOR TESTS
- 3. LONGITUDINAL: INDOOR TESTS
- 4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION
- 5. LATERAL: OUTDOOR TESTS
- 6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION
- 7. CONCLUSIONS

Test scenario

Results

39 02/09/2020

Results

Results

LAT. DYN.: OUTDOOR TEST Summary

Different tires models have been tested.

WORN TIRE IMPLIES HIGHER OUTSIDE STEERING TORQUE.

IPG Automotive – Apply & Innovate TECH WEEKS 2020

- 1. INSTRUMENTATION (OUTDOOR TESTS)
- 2. LONGITUDINAL: OUTDOOR TESTS
- 3. LONGITUDINAL: INDOOR TESTS
- 4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION
- 5. LATERAL: OUTDOOR TESTS

6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION

7. CONCLUSIONS

Assumptions

Assumptions

Assumptions

Assumptions

02/09/2020

Tools

IPG MotorcycleMaker

NUMERICAL ANALYSIS: ROLLING AND THE TIRE CORNERING STIFFNESS SENSITIVITY ANALYSIS HAS BEEN PERFORMED

Results

O/UZ/C

Results

LAT.DYN: Numerical Simulation

From the numerical sensitivity analysis

AS THE ROLLING STIFFNESS INCREASES, THE OUTSIDE STEERING TORQUE INCREASES

The Hypotesiys done seems to be correct

IPG Automotive – Apply & Innovate TECH WEEKS 2020

LAT.DYN: Numerical Simulation

02/09/2020

53

From the numerical sensitivity analysis

AS THE ROLLING STIFFNESS INCREASES, THE OUTSIDE STEERING TORQUE INCREASES

SELF ALIGNING MOMENT								
		Same turn, same speed, same lateral acceleration		e rolling stiffness	G			
Nominal tyre rolling		g stiffness	Higher tyr					
NEW TIRE	1				70% WORN TIRE			

LAT. DYN. Summary

WEAR \rightarrow HIGHER TIRE ROLLING STIFNESS \rightarrow HIGHER OUTSIDE THE CURVE STEERING TORQUE DEMAND NEEDED TO MAINTAIN TRAJECTORY

Test scenario

Soluzioni ingegneria

- 1. INSTRUMENTATION (OUTDOOR TESTS)
- 2. LONGITUDINAL: OUTDOOR TESTS
- 3. LONGITUDINAL: INDOOR TESTS
- 4. LONGITUDINAL: MAGIC FORMULAE MODIFICATION
- 5. LATERAL: OUTDOOR TESTS
- 6. LATERAL: SENSITIVITY ANLYSIS THROUGH NUMERICAL SIMULATION
- 7. CONCLUSIONS

CONCLUSIONS

02/09/2020

61

GENERAL TARGET: TO INVESTIGATE THE EFFECTS OF TIRE WEAR ON BOTH THE LATERAL AND THE LONGITUDINAL DYNAMIC; TO PROPOSE A PACEJKA MF MODIFICATION, INCLUDING THE WEAR DEPENDENCY

CONCLUSIONS:

- Increase of wear \rightarrow increase of tire stiffness, maximum grip, relaxation length
- MF modification has been proposed for longitudinal tire behavior
- Outdoor tests procedure can be used to overcome the lack of the indoor tests and proceed with tire parameter identification, for longitudinal dynamic only
- It has been demonstrated how, both experimentally and numerically, the steering torque is strongly affected by tire rolling stiffness (*the higher the stiffness, the more the outside-the-curve steering torque*)

Research partnership in technology innovation

Thank you!