

Requirements Determination from Vehicle to System Level of Mechatronics – A Tier-1 Approach to Model Based Development

Authors: Rabie Ait Ahmed Ouali, Markus Stobitzer, Dr. Hellmar Rockel, Schaeffler Technologies AG & Co. KG

Agenda

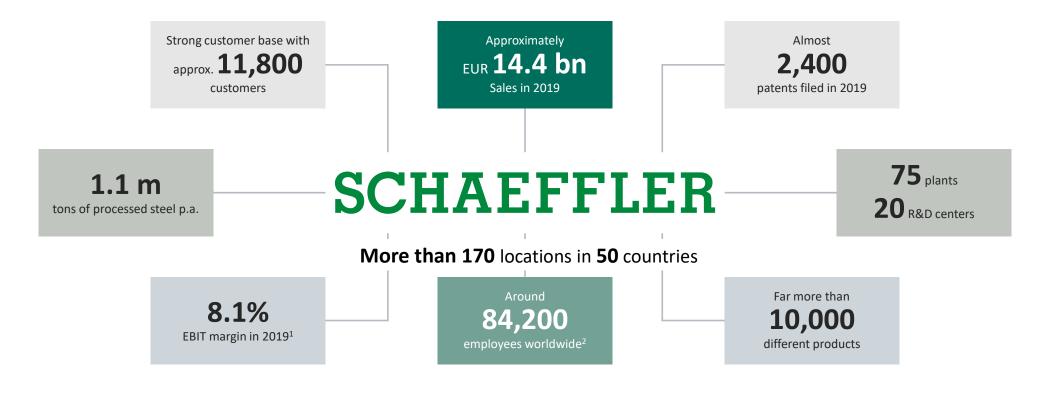
1 Introduction of Authors

- 2 Introduction Schaeffler Technologies AG & Co. KG
- **3** Setting the Scope: Requirements Elicitation from the Vehicle Level

- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation
- 5 Outlook and the Big Picture

Agenda

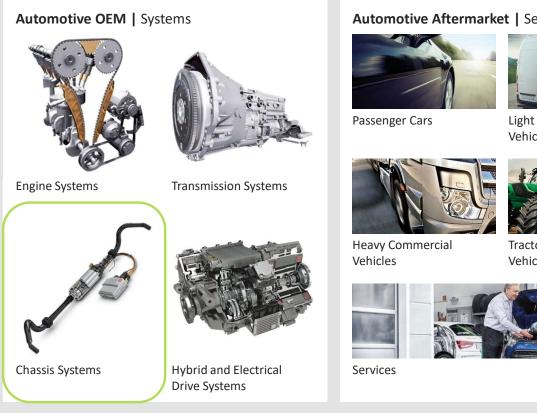
1 Introduction of Authors


2 Introduction Schaeffler Technologies AG & Co. KG

3 Setting the Scope: Requirements Elicitation from the Vehicle Level

- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation
- 5 Outlook and the Big Picture

SCHAEFFLER


Schaeffler in facts – strong starting point

¹ Before one-off effects | ² As at June 30, 2020

SCHAEFFLER

Three divisions – automotive OEM, Automotive Aftermarket and Industrial

Automotive Aftermarket | Segments

Vehicles

Tractors & Agricultural Vehicles

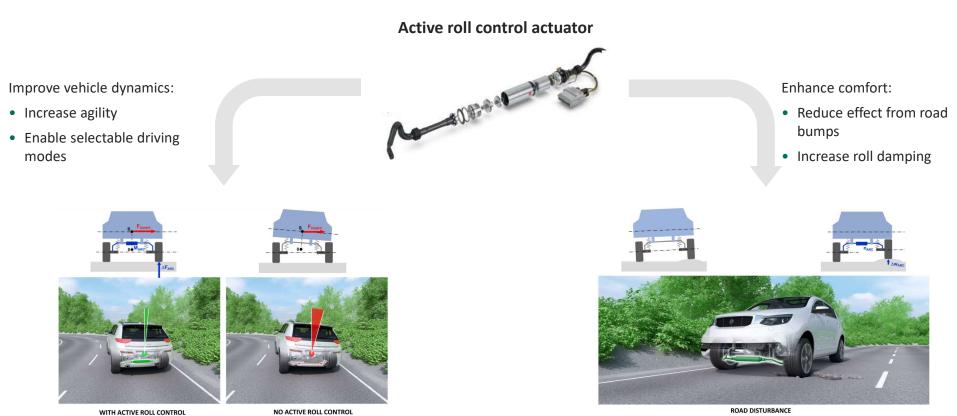
Power Transmission

Industrial | Sector Clusters

Wind

Raw Materials

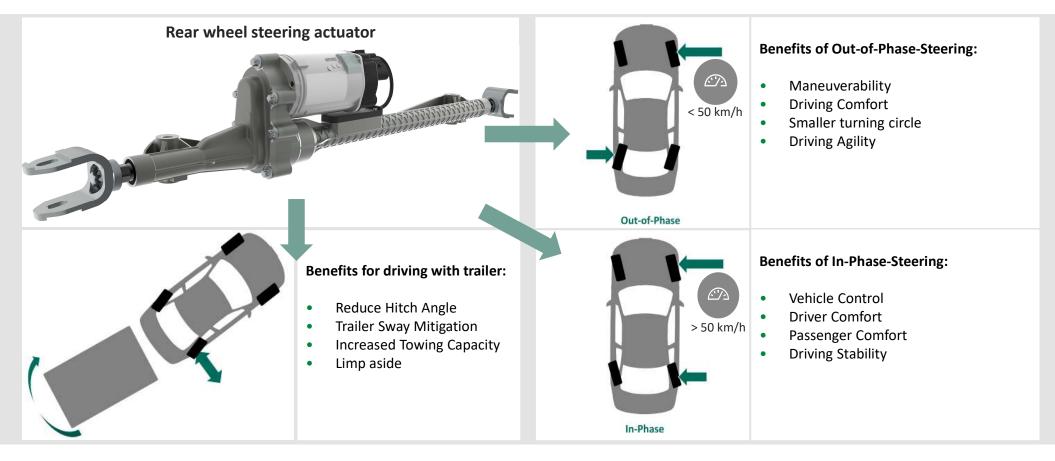
Railway


Two

Wheelers

Industrial Automation

Mechatronic Chassis Systems from Schaeffler – Active Roll Control System (iARC)


ROAD DISTURBANCE

Dr. H. Rockel, M. Stobitzer, R. Ouali, Schaeffler Technologies AG & Co. KG 30.09.2020

SCHAEFFLER

SCHAEFFLER

Mechatronic Chassis Systems from Schaeffler – Rear Wheel Steering (iRWS)

Agenda

- 1 Introduction of Authors
- 2 Introduction Schaeffler Technologies AG & Co. KG
- **3** Setting the Scope: Requirements Elicitation from the Vehicle Level

- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation
- 5 Outlook and the Big Picture

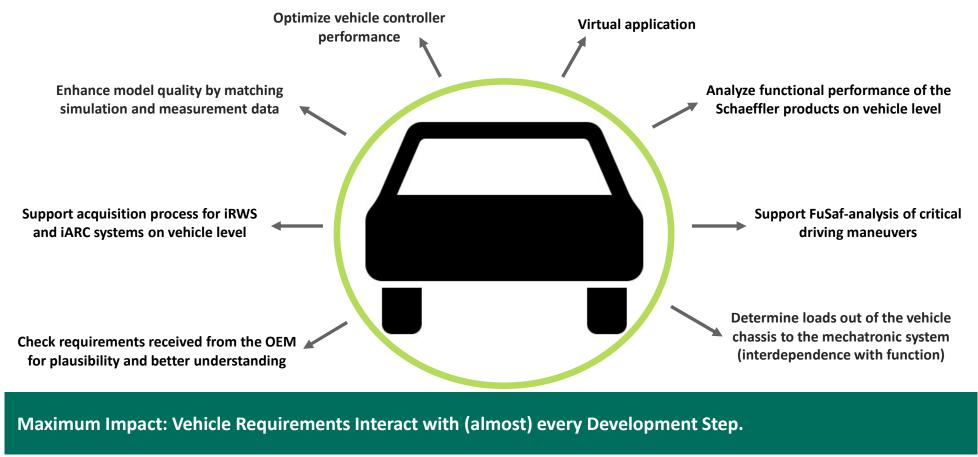
3 Setting the Scope: Requirements Elicitation from the Vehicle Level

SCHAEFFLER

A Simulation Based (Reversed) March through the V-Model

Virtual and Real Test Driving: **Requirements:** \rightarrow Well established → Special interest from a Tier-1 perspective \rightarrow State-of-the-art \rightarrow Virtual methods to drive requirements engineering from the vehicle level are very helpful! \rightarrow Improved requirements quality → Increased understanding of customer's needs \rightarrow We will show two examples from the variety of our methodical approaches on the following slides. **XiL-Scenarios:** \rightarrow Well established already \rightarrow Getting more and more sophisticated \rightarrow Several mixed scenarios (d.u.t. and its environment) possible and subject to development and permanent **Component Level Design:** improvement \rightarrow State-of-the-art \rightarrow Huge amount of virtual methods in every domain available

Vehicle Simulation for Requirements Engineering is the topic here!


Agenda

- 1 Introduction of Authors
- 2 Introduction Schaeffler Technologies AG & Co. KG
- **3** Setting the Scope: Requirements Elicitation from the Vehicle Level

- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation
- 5 Outlook and the Big Picture

4 Simulation-Model

Virtual Vehicle to Support Mechatronic Development (Overview)

Agenda

- 1 Introduction of Authors
- 2 Introduction Schaeffler Technologies AG & Co. KG
- **3** Setting the Scope: Requirements Elicitation from the Vehicle Level

- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation
- 5 Outlook and the Big Picture

4 Simulation-Model

Vehicle Model Build-up with Schaeffler iRWS- and iARC-System Models

• Information from CarMaker to IPG Matlab Front steering wheel angle Matlab /Simulink IPG - CarMaker Vehicle velocity Vehicle level • Following vehicle information integrated: - Chassis tie rod forces (left – K&C Data right) MIA Schaeffler Chassis Controller Tire model - Roll angle - Vehicle, road, driver model Product level Damper curves Validation of different driving maneuver Rear wheel steering • Information from Matlab to CarMaker Rear wheel steering angle - iRWS travel and torque - iARC torque Active roll control system validated vehicle model

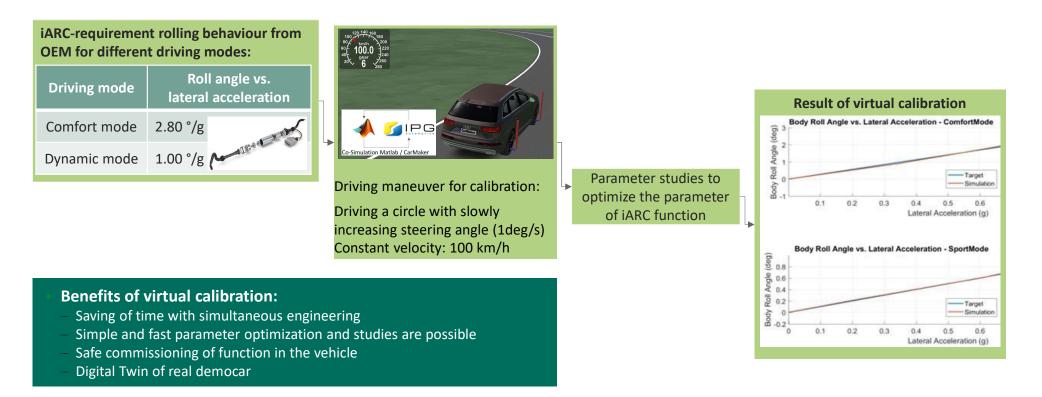
Integration Platform for our Products in Vehicle Context

SCHAEFFLER

4 Simulation-Model

Requirements Analysis Procedure Using Vehicle Simulation

Requirements for Schaeffler chassis products Business Requirements Document **SCHAEFFLER** • Are the requirements realistic? • What does the requirements mean on vehicle level? • What does this mean w.r.t. functional safety? System simulation input Requirements from the OEM Vehicle Regulation (StvZO) Feedback regarding Vehicle Norms (DIN) product requirements VDA Driving Maneuvers **System Simulation Vehicle Simulation** Vehicle simulation output


Model- and Simulation-Driven Requirements Development in Close Collaboration

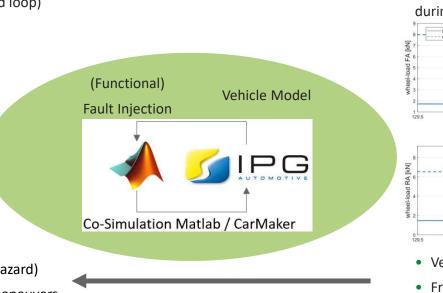
14

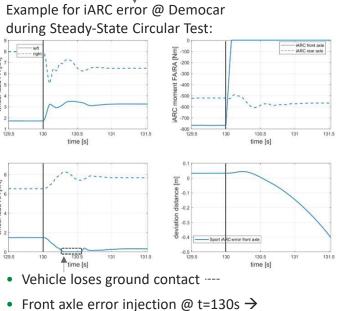
4 Simulation-Model

SCHAEFFLER

Virtual Calibration of Vehicle Requirements Based on Vehicle Roll Characteristic

Virtual Calibration Improves Development Maturity at an Early Stage


4 Simulation Methods


Functional Error Simulation for Democar Vehicle Clearance

Simulation:

FuSaf-Simulation to analyse the vehicle behaviour in different driving maneuvers

- Driving maneuvers (open and closed loop)
 - Fishhook-Maneuver
 - Steady-State Circle
 - Step Steer Test
 - Etc.

iARC torque = 0 Nm

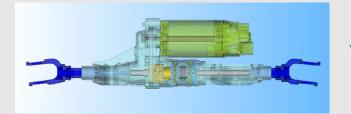
SCHAEFFLER

- **Results:**
- Democar clearance (e.g. tip over hazard)
- Understanding of critical driving maneuvers

Functional Safety Analysis for Safe Mechatronic Systems according to ASIL Specifications

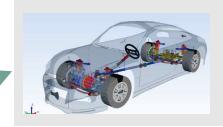
Agenda

- 1 Introduction of Authors
- 2 Introduction Schaeffler Technologies AG & Co. KG
- **3** Setting the Scope: Requirements Elicitation from the Vehicle Level


- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation
- 5 Outlook and the Big Picture

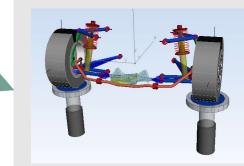
4 Simulation Methods

Finding Model Architecture when Combining Model Classes


• Simulation of mechanical loads at axle level using virtual K&C test rig

Schaeffler Chassis Component

- Steering actuator as MBS in Simpack
- Need for load spectra for strength/fatigue calculation for mechanical design
 - Tie-rod forces and torques


Integration in Vehicle Model in Simpack

- Integration of chassis component
- Simulation of the test run
- Provide load spectra for strength/fatigue calculation
- Requires the hole vehicle data (Stiffness, 3D geometries)

Model reduction ,

Integration in Axle test rig in Simpack

- The whole vehicle model is reduced to an axle model in Simpack
- Integration of chassis component (steering)
- Provide load spectra for strength/Fatigue calculation on axle level
- Requires a virtual test rig to initiate wheel body contact forces
- The input forces will be generated from CarMaker simulation

Model Boundaries and Simulation Interfaces Chosen Carefully Considering Effort and Costs

SCHAEFFLER

4 Simulation Methods

Mechanical Loads from Virtual Test Drive

CarMaker Simpack Driving Scenarios • Tie rod Acting forces • Axle test rig in Simpack – VDA, Lane change,.... - Special maneuvers x (shaft) Vx δ Fx • Vehicle Modell in CarMaker FY FΖ Diagram a herai r.M.s a herai r.N.y Mz 5 Dof of the Tie-rod forces Wheel M7 - Generate forces for the test rig

Getting the Maximum Benefit from Each Modeling Class – Synergy of Multi-Body- and System-Simulation

SCHAEFFLER

Agenda

- 1 Introduction of Authors
- 2 Introduction Schaeffler Technologies AG & Co. KG
- **3** Setting the Scope: Requirements Elicitation from the Vehicle Level

4 Simulation Methods

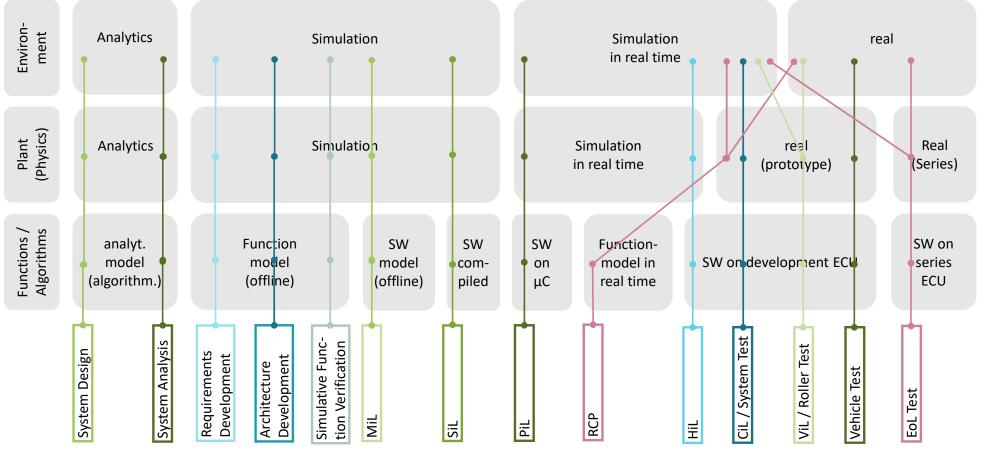
- 4.1 System Requirements from Vehicle Simulation
- 4.2 Component Requirements from Vehicle Simulation

5 Outlook and the Big Picture

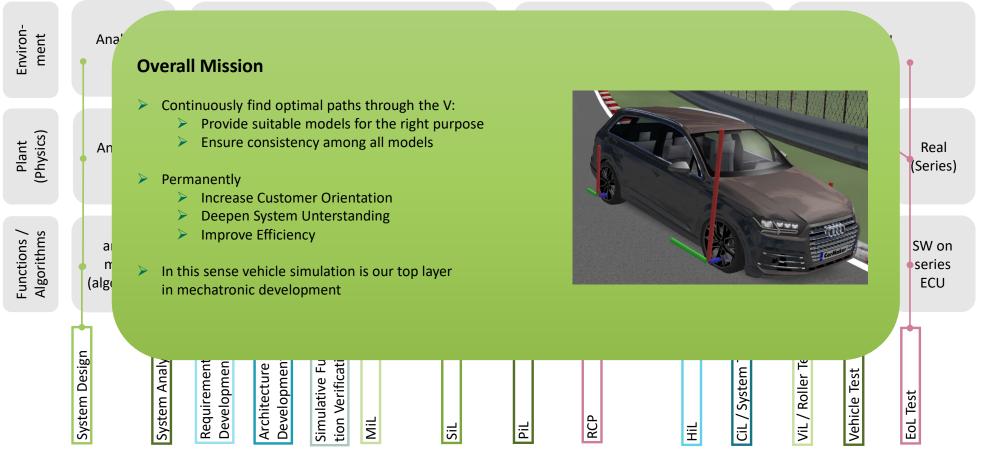
5 Outlook and the Big Picture

Conclusion and Further Ahead

SCHAEFFLER


Summary:

- Two Examples from our Methodical Portfolio have been shown.
- Top Down Approach:
 - Vehicle Level (Stakeholder Requirements)
 - System Level (System Requirements)
 - Component Level (Component Requirements)


Outlook:

- Continue model and simulation based development
 - System Architecture Development
 - System Design
 - Verification, Integration, Validation
- Interaction of virtual and real instances of vehicle, system and components (mechanics, SW, ECU)

Models and real Instances of Function, Plant and Environment → Comprehensive View on Analytical and Simulation Models for Mechatronic Development

Models and real Instances of Function, Plant and Environment → Comprehensive View on Analytical and Simulation Models for Mechatronic Development

5 Outlook and the Big Picture

SCHAEFFLER

Thank you for your attention. Please feel free to ask questions.