FORD ØTØSAN

Ford F-Max Platooning Project

Güliz Kıvançlı

05.10.2020

CONTENT

- What is Platooning?
- About Ford Otosan Platooning Project
- Platooning Scenarios
- Platooning Development Phases
- Overall Simuation Block Diagram
- Controller Approaches Platooning Controller Problem
- Validations & Testing of Conroller Approaches
- Imlementation with TruckMaker
- Ford Otosan Final Demo Video
- References
- Contact Information

WHAT IS PLATOONING?

Safe → Automatic & Immediate Braking

Efficient \rightarrow Up to %10 Fuel Economy Benefit[1]

CFD results for a platoon of two HDVs with varying inter-vehicle spacing[2]

Clean \rightarrow Reduce CO₂ Emissions

Platooning Holds Great Potential To Make Road Transport Safer,

Cleaner And More Efficient In The Near Future

FORD ΟΤΟΣΛΝ

ABOUT FORD OTOSAN PLATOONING PROJECT

Aim of the Project:

- SAE-Level 2 Automated Truck Platooning Technology
- With SAE-L2 Automated Truck Platooning, trucks will be able to handle platooning management of forming, merging, dissolving, on top of distance control and lane centering under the supervision of driver.

SAE level	Name	Narrative Definition	Execution of Steering and Acceleration/ Deceleration	Monitoring of Driving Environment	Fallback Performance of Dynamic Driving Task	System Capability (Driving Modes)
Human driver monitors the driving environment						
0	No Automation	the full-time performance by the <i>human driver</i> of all aspects of the <i>dynamic driving task</i> , even when enhanced by warning or intervention systems	Human driver	Human driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human driver and system	Human driver	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/ deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	Human driver	Human driver	Some driving modes
Automated driving system ("system") monitors the driving environment						
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Fuli Automation	the full-time performance by an <i>automated driving system</i> of all aspects of the <i>dynamic driving task</i> under all roadway and environmental conditions that can be managed by a <i>human driver</i>	System	System	System	All driving modes

- ERTRAC Roadmap suggests implementation start in 2020 with C-ACC [3]
- Platooning requires change of current road regulations (20+)

PLATOONING SCENARIO-1

PLATOONING SCENARIO-2

- Initial Virtual Validations/Simulations for longitudinal and lateral control algorithms are performed using IPG/TruckMaker for Platooning project:
- High level longitudinal controller (Distance control between vehicles)
- Low level longitudinal controller (Acceleration demand / torque convertor)

- Lateral control (Steering angle control of Bosch Servotwin EHPAS steering support)
- Vehicle dynamics model of trucks are corrolated with our F Max truck in TruckMaker.

CONTROLLER APPROACHES

Platooning Control Problem

Decentralized controllers maintain a desired intervehicular spacing in a vehicle string in the presence of uncertainties and disturbances and use various available feedforward/feedback information.

Difficulty: To ensure that the spacing errors (deviation from the desired intervehicular spacing) do not amplify from vehicle to vehicle along the platoon

<u>String Stability</u>: It is required to ensure that the spacing errors do not amplify upstream from vehicle to vehicle in a platoon. [5]

$\frac{x_{r,d,i}}{x_{r,i}} \xrightarrow{e_i} K_i \xrightarrow{u_i} G_i \xrightarrow{x_i} K_i \xrightarrow{i} K_i$

ACC with constant spacing[4]

Spacing Policies

- Constant separation (spacing) (constant)
- Constant headway time (linear)
- Constant safety factor (quadratic)

Conditions

- Individual Vehicle Stability
- String Stability
- Zero steady state spacing error

CACC[4]

FORD ΟΤΟΣΛΝ

h_{d.i}s

ACC with constant headway time[4]

VALIDATIONS OF CONTROLLER APPROACHES

- Variety of controllers are tested in SIL and MIL environment to have more testing oppurtunity at field to avoid nonlinearities or uncertanties of prototype vehicle.
- First implementations of the algorithms are done in MATLAB/Simulink Environment.
- Model-in-the-loop testings and validations are done in TruckMaker Simulink Environment.
- Further simulation studies like 3 or more trucks included TruckMaker SimNet Add – On can be used.
 - 5_{0} -5_{0} 20406080100

FORD ΟΤΟSΛΝ

- The lower level controller determines the throttle and/or brake commands required to track the desired acceleration.
- The upper (higher) level controller determines the desired acceleration for each vehicle.

An example of MATLAB/Simulink testing results

IMPLEMENTATION WITH TRUCKMAKER

REFERENCES

- [1] F. Browand, J. McArthur, and C. Radovich. Fuel saving achieved in the field test of two tandem trucks. Technical report, California PATH Research Report, CA,USA, July 2004.
- [2] A. Alam. Fuel-Efficient Distributed Control for Heavy Duty Vehicle Platooning. PhD thesis, KTH, Sweden, 2011.
- [3] ERTRAC-CAD-Roadmap-2019
- [4] Naus, G. J., Vugts, R. P., Ploeg, J., Marinus J G Van De Molengraft, & Steinbuch, M. (2010). String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach. *IEEE Transactions on Vehicular Technology, 59*(9), 4268-4279. doi:10.1109/tvt.2010.2076320
- [5] Swaroop, D., 1995, "String Stability of Interconnected Systems: An Application to Platooning in Automated Highway Systems", *Ph.D. Dissertation*, University of California, Berkeley, 1995.

CONTACT INFORMATION

Thank you for listening

• If you have any further quenstions do not hesitate to contact :

Eren Aydemir Autonomous Vehicles Engineer Email : eaydemi4@ford.com.tr

Ersun Sozen Autonomous Vehicles Engineer Email : esozen1@ford.com.tr

Sertaç Akın SV – Veh. Eng., AV & ADAS Development Engineering Email : sakin2@ford.com.tr

Elif Aksu Taşdelen Autonomous Vehicles Engineer Email : eaksu3@ford.com.tr

FORD ΟΤΟΣΛΝ

Güliz Kıvançlı Autonomous Vehicles Engineer Email : gkivancl@ford.com.tr

