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Agenda – Context-based AI Systems 

Introduction 

Ego Yaw Rate Prediction

Road User Trajectory Prediction

Key Takeways

Outlook 
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Localization 
Uncertainty

Friction 
Uncertainty

Vehicle 
Behaviour
Uncertainty

!

Pedestrian 
Behaviour
Uncertainty

Ego-model is crucial component within 
model predictive trajectory planning!
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Robust Planning Through Probabilistic Methods
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Trajectory predictions of nearby road 

users is crucial component within model 

predictive trajectory planning!
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Ego Yaw Rate Prediction

Robust Meta-Learning of Vehicle Yaw Rate 
Dynamics via Conditional Neural Processes
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▪ Vehicle models are key components for autonomous driving
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Ego Vehicle Model

+450 kg

+350 kg

+450 kg

+350 kg

Simple 

Models

Advanced

Models

Dynamic

Single-Track Model

Point-Mass

Model 

Kinematic 

Single-Track Model

Single-Track 

Drift Model

Multi-Body

Model

Real-time capability

Parameter dependency

Combination of models
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▪ Vehicle models are key components for autonomous driving
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Ego Vehicle Model
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Complex modeling 

mainly affects yaw rate!

Could the yaw angle be 

determined differently?

Accuracy across ODD

Parameter dependence

Computational complexity
→ Human-like knowledge transfer

→ Learn to learn on current situation 

→ Meta-learning

Past

Future
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▪ Kinematic Single-Track Model (KST) ▪ Dynamic Single-Track Model (DST) ▪ Single-Track Drift Model (STD)

7

Physical Yaw Rate Predicting
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Context Awareness

Parameter Dependence

Simplified

Model Error

Not Known

Estimated

Costly Sensored

→ Human-like 

→ Meta-learning

Data-driven
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D_icy

D_wet

D_dry

▪ Meta-learning: Conditional Neural Processes (CNP)     
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Data-driven Yaw Rate Predictions

Meta-learning

Idea
Dataset Predictor

Supervised learning

Dataset Predictor

Dataset K

Dataset …

Dataset 1 

Meta-Dataset

Predictor

Meta-Dataset

Dataset
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▪ Application specific CNP Architecture
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Conditional Neural Processes (CNP) – Architecture
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→ Quite complex. Interested? Contact me afterwards!
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▪ CNP training data were collected with CarMaker:

▪ Two urban cases 

▪ Two interurban cases

▪ Two longitudinal dynamic cases

▪ Fourteen lateral dynamic cases 

▪ All with different friction coefficients:

▪ All in the velocity range:
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Conditional Neural Processes (CNP) – Training
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▪ Change of friction coefficients to:

▪ Evaluation in all 20 cases with velocity variations
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Results – Friction Variation

→ Similar results for other variations (e.g. mass, scenario)!
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▪ Does the context-based AI system (CNP) generalize like a human?

▪ Human

▪ AI system
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Generalization? 
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Driving School

Dataset
AI 

System

Context

Context

Context

Context

AI 

System

→ Transferable without retraining

→ AI system is able to generalize

Similar results are achieved 

for other variations!

Context
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Ego Yaw Rate Prediction
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Trajectory predictions of nearby road 

users is crucial component within model 

predictive trajectory planning!

Ego-model is crucial component within 
model predictive trajectory planning!

Accuracy across ODD

Parameter dependence

Computational complexity

Takeaway I: 

➢ Empirical magic formula (Pacejka tire model) can be reconsidered via data-driven methodologies

➢ Estimated/sensorized parameter determination up to model updating/blending can be reconsidered via 

context-based AI systems 

➢ Data-driven context-based AI systems enable to reduce physical model induced assumptions 

Thus, context-based AI system for yaw rate predictions could enhance, e.g., a kinematic single-track model
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Road User Trajectory Prediction

Transfer Learning Study of Motion Transformer-
based Trajectory Predictions
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▪ State of the Art

− multi-modal predictions (multiple behavioral decisions)

− learning-based methods (context/open world) 

▪ Second Context Challenge

− many vehicle- and country-specific shifts

− diverse global context in real world

Trajectory Prediction
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▪ Background

− trajectory planning in automated driving

− trajectory prediction of other road users

▪ First Context Challenge

− predictions are needed in the real world

− diverse local context in real
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)

Local Context

Another Solution

Local Context Evolution 
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)

Local Context

AI 

System
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)

AI 

System

Simple 

Internal

Predictions
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)

Local 

Map

Attention

AI 

System
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)

AI 

System

Refinement
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▪ One approach: Motion Transformers

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)

Multi-modal 

Predictions

AI 

System
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▪ One approach: Motion Transformers

▪ attention-based approach

▪ considers multi-modality

▪ addresses spatial-temporal aspects 

→ enables local context and interaction awareness

First Challenge: Local Context
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▪ Generative Pre-trained Transformers (e.g. ChatGPT)
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▪ Differences around the globe

Second Challenge: Global Context
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▪ One Solution: Transfer Learning
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▪ Dataset Setup
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CarMaker – Transfer Learning Study



Chair of

Automatic Control

Scaling Impression
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▪ Performance results

▪ Computational demand

Numerical Results

Total training duration for each model Training duration on target data only

20September 12, 2024Context-Based AI Systems for Robust Yaw Rate and Trajectory Predictions in Autonomous Driving | Lars Ullrich 

→ Fine-tuning yields the best results

→ Further details can be found in the paper
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▪ Visual comparison between the source baseline 

model and the fine-tuned model on a CMD target 

dataset scenario

Qualitative Results

▪ Visual demonstration of catastrophic forgetting
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→ Further details can be found in the paper
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Ego-model is crucial component within 
model predictive trajectory planning!

Localization 
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Friction 
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Road User Trajectory Prediction
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Consider local context 

Address global context 

Insights for future innovations

Takeaway II: 

➢ Context-based AI system increases situation and interaction awareness

➢ Context-based AI system could be transferred to adapt to global differences

➢ Context-based AI system improves trajectory planning

Thus, context-based AI system for trajectory predictions could enhance ego trajectory planning

Trajectory predictions of nearby road 

users is crucial component within model 

predictive trajectory planning!
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Robust Planning Through Probabilistic Methods
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Overall Takeaway: 

➢ Context-based AI systems enable improved autonomy

➢ Data-driven is a great complement to knowledge-based approaches

➢ Alongside software-defined vehicles, data is becoming increasingly important

Thus, achieving higher autonomy is based on complex systems that include AI. 

❖ Therefore, the product development processes need to be updated
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Expanding the Classical V-Model
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