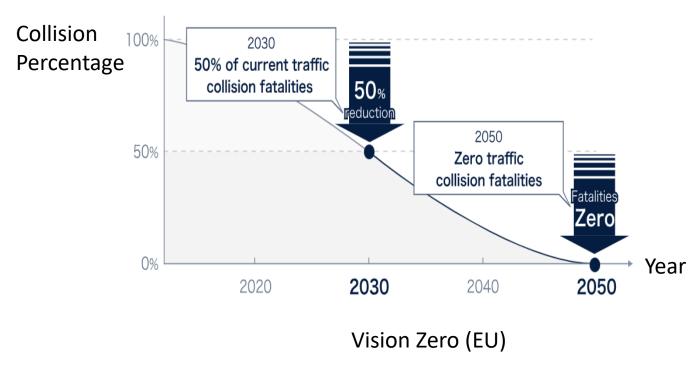


Digital Twin-Based Simulated Automotive Radar for Virtual Testing


Silan Karadag Gothenburg, Sweden

This research was conducted under the EVIDENT project with funding from Vinnova.

INTRODUCTION

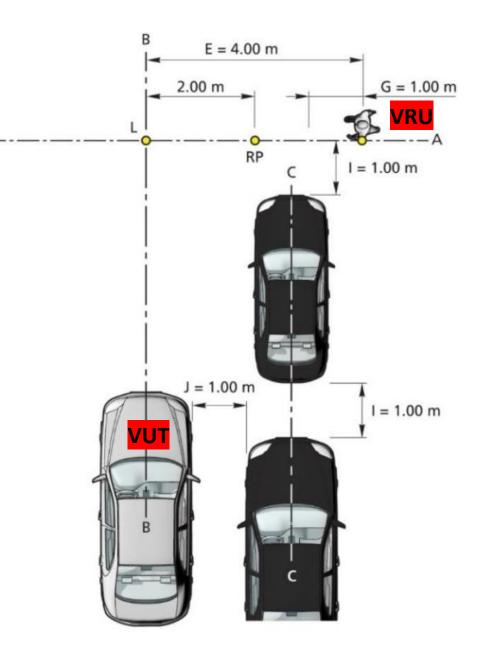
Motivation

"Almost every real situation will sooner or later be modeled"

• Aim

'To what extent can simulation and virtual testing replace real-world testing?'

EVIDENT Project Partners
AstaZero
CHALMERS
NUVERSITY OF TECHNOLOGY
APTIV
Res
Stando
Viti



Asymptotic

Scenario

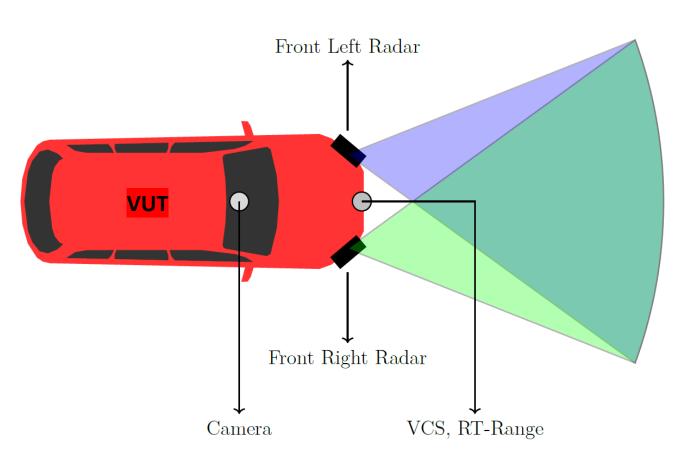
Euro NCAP: Car-to-Pedestrian Nearside Adult (CPNA)

- AA Trajectory of Pedestrian Dummy
- BB Centerline of Vehicle Under Test (VUT)
- CC Centerline of Obstruction Vehicles
- G Acceleration Distance of Pedestrian Dummy
- I Distance of Pedestrian Dummy to Front of Obstruction Vehicle
- J Distance Between VUT and Obstruction Vehicle
- L Impact position
- RP Reference Point

Scenario

AEB not active

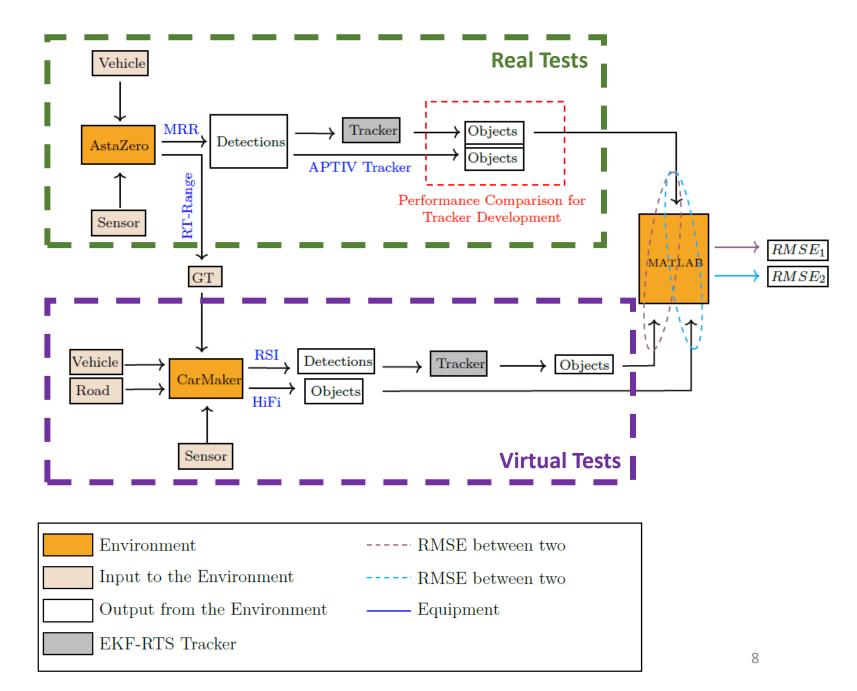
AEB active


TEST CASE

Case Number	Host Speed	Pedestrian Model	Collision Point
1	15 km/h	Adult	50%
2	15 km/h	Child	50%
3	30 km/h	Adult	50%
4	30 km/h	Child	50%

MOTION MODEL

EQUIPMENT


Ground Truth Data
GPS information of VUT, VRU
Input data for simulations
Reference data

- Experimental Data
 VUT and Sensor
- Simulation Data
 VUT, VRU, and Sensor

DIGITAL TWIN

- "Virtual Replica"
- Fidelity Level

<u>Advantages</u>
 Iterative design
 Various scenarios
 Easy prototyping
 Decreased costs

Digital Twin of the Vehicle

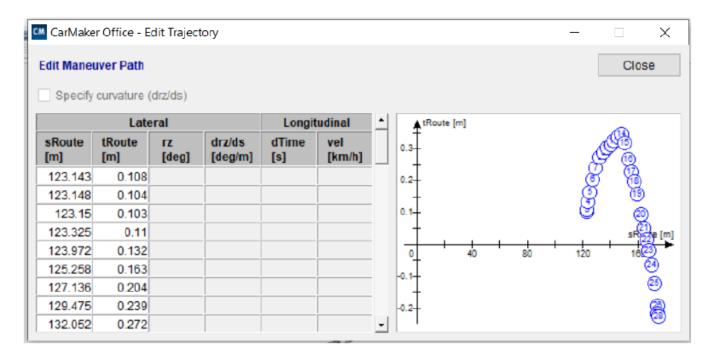
- Limits
 - Acceleration

Digital Twin of the Motion

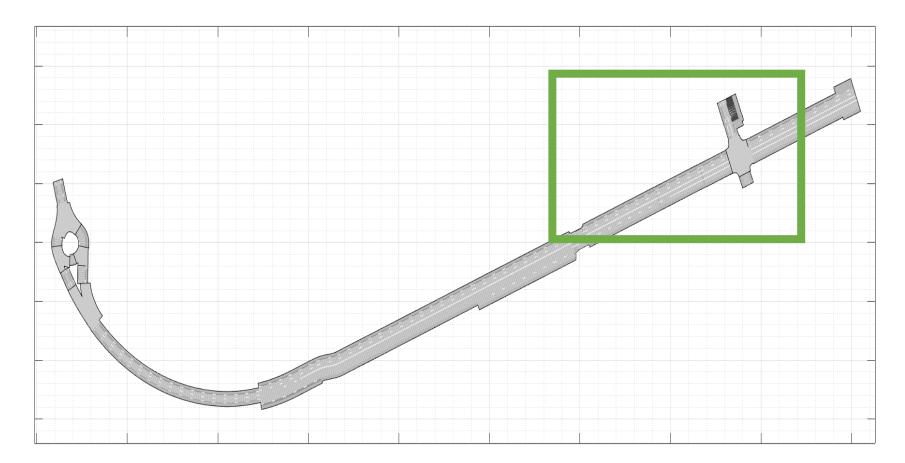
- Longitudinal Dynamics
 - Speed Profile
 - Timestamp
- Lateral Dynamics
 - Trajectory

CarMaker Office - Input from File

Input from File


	File	h15_adult_50	p_20231102_14	14139_001.txt		Cont	ent	
→ Models	Referenc	Reference Channel Starting Conditions						
f(t) I/O-Channels	Based on:	 Time Channel 	O Distance (and	d Time) Factor	Gear No Velocity	[km/h]	1	
File Test	Time Distance	[s] Time [m] HostLongPos	~	1.0	max. Gas	[01]	1	
active Piece	Start Time Start Point	[s] [m] 0	End Time [s]		Consider			
Model Quantity to override		Channel in File	Filter yes? Para	-	onditioning Offset	Signal Limits min max	(
Speed - Target	[m/s]	HostSpeed	× 🗆	1	1.0 0.0		-	
Speed - Upper Limit	[m/s]		× 🗆	1	1.0 0.0			
Speed - Lower Limit	[m/s]		~	1	1.0 0.0			
Steering Wheel Angle	[rad]		✓ □	1	1.0 0.0			
Steering Torque	[Nm]		× 🗆	1	1.0 0.0			
Gas Pedal	[01]		× 🗆	1	1.0 0.0			
Brake Pedal	[01]		× 🗆	1	1.0 0.0			
Clutch Pedal	[01]		~	1	1.0 0.0			
Gear No	[-1n]		× 🗆	1	1.0 0.0			
Selector Control	[-91]		× 🗆	1	1.0 0.0			
Parking Brake	[01]		~ 🗆	1	1.0 0.0			
Brake Pressure	[bar]		~ 🗆	1	1.0 0.0			
LIFF.User1			~ 🗆	1	1.0 0.0			

_


 \times

Close

Vehicle parameters Maneuver Visualization Messages								
Maneuver list General								
Maneuver settings Input from file Maneuver 0 Longitudinal / Lateral steps 0	Label Description End condition Limit Commands	Time [s]	50 Distance [m]	Ca	Iculate		fo	f(x)
	Longitudinal dyn	amics			Lateral dynamics			
	Motion Driver parameters Manual gear st Manumatic Restart with sp from beginning	hifting beed profile	Speed profile	✓ Attr.	Motion Trajectory type Positioning type Route Specify time channel (defin Edit trajectory	Follow trajectory Polyline Route Route_4 V Tes long. dynamics)	Attr.	
★ →								

Digital Twin of the Road

- Provided by AstaZero
- ASAM OpenDrive Format
- Lane markings, lane width, junctions included
- VUT, VRU routes have to be defined

Digital Twin of the Pedestrian

Balloon Dummies

Property	Value
Adult Height	181 cm
Adult Width	$50 \mathrm{~cm}$
Child Height	$114~{\rm cm}$
Child Width	$30~{ m cm}$

<u>Stationary Vehicles</u>
 Positioning based on the scenario definition.

Barriers

•

Both sides of the road.

- <u>Buildings</u> Warehouse.
- <u>Trees</u>

Both sides of the road.

• Digital Twin of the Sensors

Sensor Properties Based on Technical Characteristics.

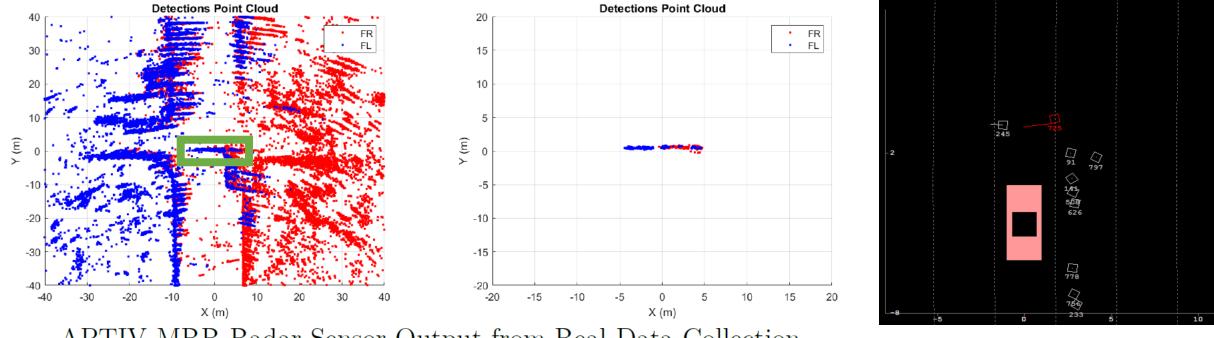
Property	Value	Unit	Radar Model	Sensor Type
Operating Frequency	76.5	GHz	HiFi & RSI	FL&FR
FOV (azimuth)	150	deg	HiFi & RSI	FL&FR
FOV (elevation)	10	deg	HiFi & RSI	FL&FR
Maximum Range	150	m	HiFi & RSI	FL&FR
Probability of Detection	0.5	-	HiFi	FL&FR
Probability of False Alarm	10^{-4}	-	HiFi	FL&FR

- Radar HiFi
- Radar RSI (Ray Tracing Based Model)

Radar Pipeline: data processing, filtering, clustering, tracking

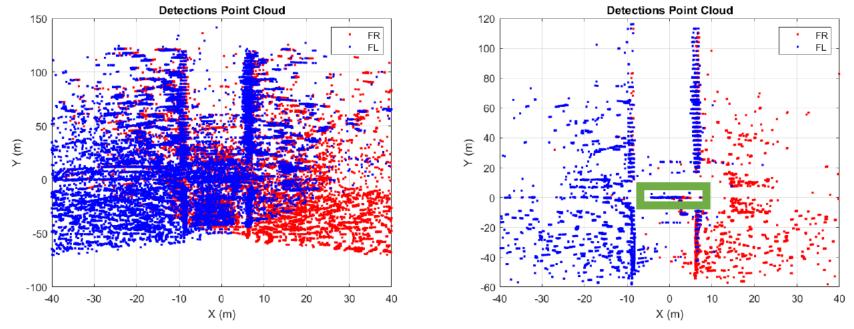
DETECTIONS (RSI Radar)

OBJECTS (HiFi Radar)


Camera View (Side-by-Side Comparison)

Test Track (AstaZero)

Simulation Environment (CarMaker) 17

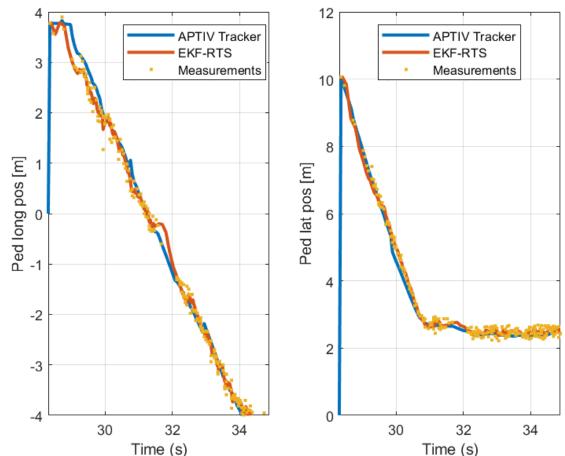

APTIV MRR Radar Sensor Output

APTIV MRR Radar Sensor Output from Real Data Collection (Unfiltered Data on the Left, Filtered Data on the Right).

Visualization Tool

IPG CarMaker RSI Radar Sensor Output

IPG CarMaker Radar Sensor Output from Synthetic Data Collection (Unfiltered Data on the Left, Filtered Data on the Right).


RSI Radar Object Tracking

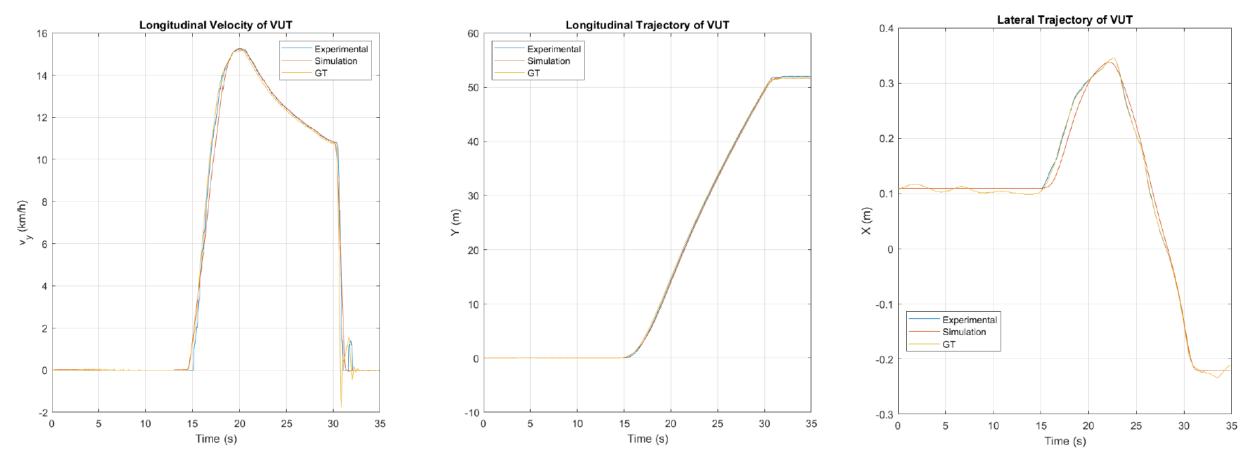
<u>Tracker</u>

- Extended Kalman Filter (Forward Pass)
- Rauch–Tung–Striebel Smoothing (Backward Pass)

Performance Criteria

• Comparison with APTIV Tracker

RESULTS

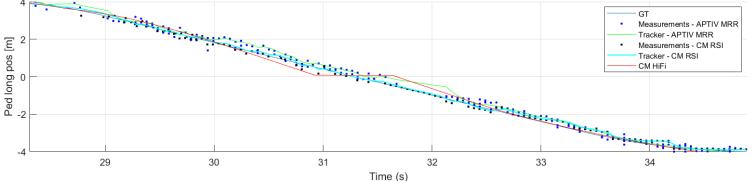

- Simulation-to-Reality Gap
- Sensor Fidelity
- Sensitivity Analysis

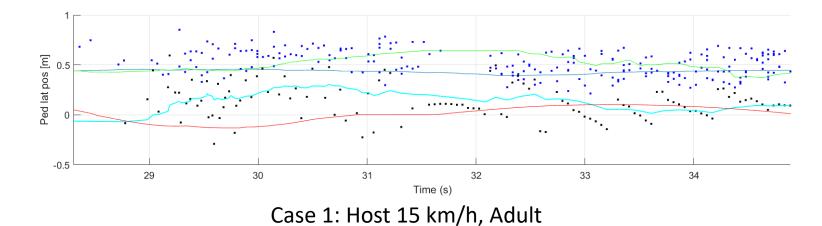
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

 y_i : Experimental Data \hat{y}_i : Simulation Data

Simulation-to-Reality Gap

• RQ: Does the proposed method allow comparability to the simulation-to-reality?


Simulation-to-Reality Gap


 RQ: How does the simulation-to-reality gap vary among the different test runs? Given the limitations: Vehicle model, driver profile, input data (speed, steering angle). Lower speeds usually indicate better results.

Case Number	Host Speed	Pedestrian Model	MAE (Long)	MAE (Lat)
1	15 km/h	Adult	0.18	≈ 0
2	15 km/h	Child	0.36	≈ 0
3	30 km/h	Adult	0.4	≈ 0
4	30 km/h	Child	3.86	≈ 0

Sensor Fidelity

• RQ: Does the proposed method allow comparability to the sensor fidelity?

Sensor Fidelity

Root Mean Square Error Values between Simulated and Real Data for Pedestrian Longitudinal Movement Tracking - RMSE(m).

Case	RMSE (HiFi)	RMSE (RSI)	RMSE (m)
h15 Adult	0.24	0.21	0.013
h15 Child	0.23	0.21	0.016
h30 Adult	0.35	0.31	0.014
h30 Child	0.10	0.11	0.026

Root Mean Square Error Values between Simulated and Real Data for Pedestrian Lateral Movement Tracking - RMSE(m).

Case	RMSE (HiFi)	RMSE (RSI)	RMSE (m)
h15 Adult	0.50	0.39	0.18
h15 Child	0.92	0.80	0.48
h30 Adult	0.67	0.5	0.57
h30 Child	3.63	3.6	4.01

• RQ: How does the fidelity of the sensor model affect the execution efficiently representing the necessary degree of fidelity?

RSI > HiFi, due to object merging.

Sensitivity Analysis

- RQ: Which parameters have a strong influence on the performance of simulations? How do these parameters influence the simulation results?
 - Sensor Parameters
 Noise bandwidth
 Number of rays
 Number of reflection points

Environmental Parameters
 Temperature
 Rain Rate
 Speed of Wind
 Angle of Wind

CONCLUSION & FUTURE RESEARCH

SUMMARY

- Successful tracking of pedestrians considering the limiting factors (vehicle dynamics, lower fidelity twins)
- Higher fidelity radar sensor provides better tracking however it is not a costeffective solution.
- **RQ:** Virtual testing a promising method to accelerate the development of autonoumous vehicles, and holds the potential to replace physical tests to some extent however requires the use of high fidelity components.

FUTURE RESEARCH

• Further research should focus on analysis with higher fidelity components, HiL setups, sensor fusion with other sensors.

QUESTIONS?

This research was conducted under the EVIDENT project with funding from Vinnova.

Funding from:

